
Notice To Reader: The content of this document is only to illustrate the design and implementation of version 1.486. YD reserves 
the right to change the design and implementation in subsequent versions.

1 Quickstart  
This chapter will demonstrate the necessary steps for investors to access and use the YD order management system (YD OMS) 
through a simple strategy program, and help investors establish a basic understanding of YD API.

1.1 Environment preparation  
Initially, download the corresponding version of the API from https://www.hanlinit.com/download. Before downloading, please 
register an investor account on the official website and wait for approval.(YD promises that registered information will only be used 
for disseminating YD-related information and not for other purposes). Unzip the ydClient_1_486_XX_XX.tgz file after downloading, 
and use the tools and programs in the ydClient/win64 and ydAPI directories for the demonstration.Then, through using the 
Windows GUI client ydClient of YD, you can directly connect to the YD OMS and easily check the running results of the subsequent 
programs.

First, enter the ydClient/win64 directory and modify the YDConfig.ini file to the following content:

The above configuration information points to an Internet test environment provided by YD for SHFE and INE. This environment 
operates around the clock, replaying market data from a specific trading day to facilitate investor debugging. For more details, 
please refer to https://www.hanlinit.com/docs/dev-environments/.

After completing the configuration, double-click YDClient.exe to run it, and use any one of the accounts 001, 002-099, 100(password 
same as username) to log in. Once logged in successfully, you can browse the content in various menus.

After completing the steps above, we will now forcus on preparing the strategy program.

###########################################

######### Network configurations  #########

###########################################

# IP address of yd trading server

# TCP port of yd trading server, other ports will be delivered after logged in

TradingServerIP=118.190.175.212

TradingServerPort=41600

###########################################

######### Trading configurations  #########

###########################################

# Choose trading protocol, optional values are TCP, UDP, XTCP

TradingProtocol=TCP

# Timeout of select() when receiving order/trade notifications, in millisec. -1 indicates running without 

select()

TradingServerTimeout=10

# Affinity CPU ID for thread to send TCP trading and receive order/trade notifications, -1 indicates no 

need to set CPU affinity

TCPTradingCPUID=-1

# Affinity CPU ID for thread to send XTCP trading, -1 indicates no need to set CPU affinity

XTCPTradingCPUID=-1

###########################################

####### MarketData configurations  ########

###########################################

# Whether need to connect to TCP market data server

ConnectTCPMarketData=yes

# Timeout of select() when receiving TCP market data, in millisec. -1 indicates running without select()

TCPMarketDataTimeout=10

# Affinity CPU ID for thread to receive TCP market data, -1 indicate no need to set CPU affinity

TCPMarketDataCPUID=-1

# Whether need to receive UDP multicast market data

ReceiveUDPMarketData=no

###########################################

####### Misc configurations        ########

###########################################

AppID=yd_dev_1.0

AuthCode=ecbf8f06469eba63956b79705d95a603

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

YD Trading System C++ API Programming Guide

1 / 135

af://n3
af://n5
https://www.hanlinit.com/download
https://www.hanlinit.com/docs/dev-environments/
af://n12


1.2 Strategy program  
To compile an executable program, you need to prepare the YD sample program first. Please copy all the files from ydAPI/linux64, 
ydAPI/linclude, and ydAPI/example directories to the working folder of the Linux server, and use the following commands to 
compile:

After a successful compilation, copy the content from YDConfig.ini, as mentioned above, to the config.txt file. Then you can run the 
first sample program. Replace  and  with the credentials you use to log into the ydClient:

When the following information appears, it means that the strategy program has started to execute, and please refer to the content 
about dmidecode in the Information Collection for the warning messages:

Please observe the changes in orders, trades, positions, and funds in the account detail interface of ydClient after trades occur.

So far, the first YD sample program has been compiled and run successfully. Investors can continue to try other sample programs 
and read these programs, which helps investors to quickly grasp the basic knowledge of the API. The following is a brief excerpt of 
the instructions for each example in ydExample:

By studying the sample programs, you should have mastered the basic steps of writing YD strategy programs. Next, it is 
recommended that investors read the remaining contents of the documentation systematically. The documentation not only 
provides a detailed explanation of YD's basic principles and usage methods but also offers tips and best practices for writing YD API 
programs.

If you encounter any problems during the reading process, feel free to contact the YD support team by email (support@hanlinit.co
m) or through your broker. The YD support team is happy to answer any questions you may have.

g++ -fpic -g -std=c++11 -c -O3 -pthread -Wall -c ydExample.cpp -o ydExample.o

g++ -fpic -g -std=c++11 -c -O3 -pthread -Wall -c Example1.cpp -o Example1.o

g++ -fpic -g -std=c++11 -c -O3 -pthread -Wall -c Example2.cpp -o Example2.o

g++ -fpic -g -std=c++11 -c -O3 -pthread -Wall -c Example3.cpp -o Example3.o

g++ -fpic -g -std=c++11 -c -O3 -pthread -Wall -c Example4.cpp -o Example4.o

g++ -fpic -g -std=c++11 -c -O3 -pthread -Wall -c Example5.cpp -o Example5.o

g++ -fpic -g -std=c++11 -c -O3 -pthread -Wall -c Example6.cpp -o Example6.o

g++ -fpic -g -std=c++11 -c -O3 -pthread -Wall -c Example7.cpp -o Example7.o

g++ -fpic -g -std=c++11 -c -O3 -pthread -Wall -c Example8.cpp -o Example8.o

g++ -fpic -g -std=c++11 -c -O3 -pthread -Wall -c Example9.cpp -o Example9.o

g++ -g -std=c++11 -o ydExample -I. ./ydExample.o ./Example1.o ./Example2.o ./Example3.o ./Example4.o 

./Example5.o ./Example6.o ./Example7.o ./Example8.o ./Example9.o -m64 -Wall -lpthread -lrt -ldl -Wl,-

rpath,. -L. -l:yd.so

1

2

3

4

5

6

7

8

9

10

11

# ./ydExample <example name> <config file> <username> <password> <instrumentID>

./ydExample Example1 config.txt <username> <password> cu2306

1

2

sudo: a password is required

login successfully

Position=0

sell open 1 at 71580

1

2

3

4

All sample programs use the following strategy for a single product:

    If the buying volume in the market is 100 more than the selling volume, buy one lot at the counter 

price.

    If the selling volume in the market is 100 more than the buying volume, sell one lot at the counter 

price.

    The risk control restriction is that the position volume is not allowed to exceed 3.

The following sample programs demonstrate different levels of precision in position management:

Example1: Manages only executed positions, not order positions, and allow at most one pending order at a 

time.

Example2: Manages order positions based on order feedback for more precise position management.

Example3: Based on the previous example, the management of order positions based on self-issued orders 

has been added to achieve more accurate position management. In addition,this example also demonstrates 

how to use notifyCaughtUp to obtain information about catching up to the latest transaction records.

Example4: Using YDExtendedApi to achieve the same functionality can greatly simplify the program.

Example9: demonstrates how to use OrderGroup to implement reliable UDP order placement and cancel locally 

generated orders.

The following sample programs are used to demonstrate other functions:

Example5: This program demonstrates how to send instructions for executing or abandoning options, as well 

as inquiring about them.

Example6: Demonstrates the utilization of the YDExtendedApi in a market maker's quoting system.

Example7: Provides a demonstration on how to utilize YDExtendedApi for uncomplicated risk monitoring and 

alerting.

Example8: Demonstrates how to use YDExtendedApi to automatically establish traditional combined positions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

YD Trading System C++ API Programming Guide

2 / 135

af://n12
mailto:support@hanlinit.com


2 Basic concept  
2.1 API selection  
YD provides five different types of trading interfaces, including ydApi, ydExtendedApi, raw protocol, ydCTP, and Python interface, to 
meet various requirements of investors.

Raw protocol is the most flexible way to place orders. YD has publicly announced the uplink protocol for placing and canceling 
orders, as well as the downlink protocol for order notification, trade notification, error notification, etc. Investors can construct UDP 
packets for placing or canceling orders, or monitoring and analyzing downlink acknowledgment messages on their own. Raw 
protocol needs to be used in conjunction with the ydApi or ydExtendedApi. It is suitable for investors who are accustomed to using 
raw protocols to access OMSs. For details, refer to Raw Protocol.

ydCTP is a CTP-like API that simulates core functions of the CTP such as order placement and query, allowing programs that were 
developed based on CTP to connect to the YD trading system without modification. This makes it easier for investors who have not 
yet officially used the YD OMS to evaluate and test its performance and stability. However, due to the incompatible architecture 
between YD and CTP, ydCTP cannot cover all CTP interfaces, nor can it achieve behavior completely identical to native interfaces. 
Therefore, it is not recommended to use ydCTP for trading in a production environment. For details, please refer to the relevant 
documentation.

Please refer to the relevant documents in the ydClient package for more detailed information about YD python version API.

2.1.1 YdApi  

ydApi is a high-performance API designed with the concept of simplicity and high efficiency. Its main responsibility is to send the 
investor's orders to the OMSs and notify the investor through the callback function after receiving the notifications. Generally, 
except for Static Data, the API does not retain any Dynamic Data like orders and trades. It also does not assist investors in 
calculating funds and positions, thus occupying minimal memory. Investors who use ydApi need to manage funds and positions 
based on their preday positions and the subsequent notifications such as orders and trades, and provide corresponding methods 
for queries. It is suitable for investors who are highly concerned about performance and can manage their own funds and positions.

If the High Availability feature is enabled, ydApi will occupy roughly equivalent memory as the amount of notification data for high 
availability recovery. Based on estimates, with 5 million orders without trades in a Linux 64-bit system, ydApi will occupy around 
400M of memory. In actual production, due to the presence of trades, rejected orders, combinations, etc., it will occupy more 
memory in the same order volume situation.

ydApi possesses the following features:

Thread safety: Any API method can be called at any time under any thread.

Reentrancy: Any API method can be called in any callback function.

Pointer stability: The pointers to static data obtained through the "get" or "find" methods in ydApi will not change throughout 
the entire life cycle. The data pointed to by the pointer can be read at any time through the strategy program; However, the 
pointers of order notifications and trade notifications obtained through the "notify" callback interface are different, and the 
pointers of multiple notifications with the same "OrderSysID" are also different. The exception is that the pointers of static data 
sent back through "notifyCombPosition" method are stable.

YD currently provides three versions of the API: Linux 64-bit, Win 32-bit, and Win 64-bit. The Linux 64-bit version of the API has been 
optimized extensively for the Linux platform and has significantly better performance than the two versions for Windows. It is a 
highly recommended version for production use. For investors who have to use Windows platforms, since the Win 32-bit program is 
only available for a 2G of user memory, it is suggested that investors use the 64-bit version to prevent the API from being frozen due 
to out-of-limit of memory.

2.1.2 YdExtendedApi  

ydExtendedApi is a versatile API designed with the ideals of comprehensive functionality and ease of use. Based on inheriting all the 
functions and features of ydApi (ydExtendedApi is a subclass of ydApi), the API internally stores all the Dynamic Data such as orders 
and trades, etc. Based on these dynamic data, it helps investors manage funds and positions, and provides a variety of unique data 
structures and query methods at the cost of a very low downlink performance overhead and certain space occupation. The larger 
the transaction volume, the larger the space occupied. It is suitable for investors who are accustomed to using a full-featured API.

Since maintaining an extended data structure locally, ydExtendedApi occupies more space than ydApi. It is estimated that 
ydExtendedApi will occupy around 1400M of memory when the high availability feature is disabled in a Linux 64-bit system with 5 
million unfilled orders. When the high availability feature is enabled, ydExtendedApi will occupy approximately 1800M of memory. In 
actual production, considering trades, failed orders and combinations, etc., more space can be occupied under the same order 
volume.

The query methods of ydExtendedApi are all executed locally rather than at the OMSs. However, considering that all queries are 
locked, it costs a lot. The strategy program can save the pointers returned from the API and directly use the data pointed by the 
pointer in the subsequent execution process. In addition to inheriting the pointer stability feature of ydApi, any pointers obtained 
through the "get" or "find" methods of ydExtendedApi, as well as the pointers to extended dynamic data sent back by 
YDExtendedListener callbacks, are also stable.

2.2 Order modes  
YD supports three types of order modes: TCP, UDP, and XTCP, which are different in terms of penetration performance and 
reliability. Investors can choose the order mode according to their own needs.

YD Trading System C++ API Programming Guide

3 / 135

af://n24
af://n25
af://n30
af://n42
af://n46


2.2.1 TCP order  

The overall penetration delay of TCP order transmission mode is relatively high. The time consumption of an API order transmission 
mode itself (the time from calling the API order interface to the first byte of the order being sent to the fiber) is about 1-2 μs. The 
penetration to the OMS is around 8-10 μs, but it can ensure that the order is delivered to the OMS. When investors test or connect 
to the OMS through the Internet, it is recommended to use the TCP order transmission mode to avoid the problem of order loss 
caused by the firewall and other reasons.

In the same thread of TCP order transmission, it is also responsible for sending non-trading information (such as password 
modification) and receiving notification information sent by the OMS. Therefore, no matter what kind of order transmission mode is 
used, a thread for the TCP order transmission will definitely be created.

To use TCP order transmission, please set TradingProtocol=TCP in the API configuration file. Please refer to Configuration File for 
details.

2.2.2 UDP order  

UDP order transmission mode has a low overall penetration delay. The time consumption for an API order itself is about 200 ns, 
while the OMS penetration is about 2-3 μs (depending on the different exchanges). The reference penetration value provided by YD 
Official is measured under the UDP order transmission mode. It is recommended that investors use UDP order transmission mode 
in the production environment. UDP order transmission mode is only used for submitting uplink orders, and notifications are still 
sent through the original TCP channel.

For some investors who are concerned about the possibility of UDP order loss, firstly, the network conditions where the YD OMSs 
are located are usually stable, fast and idle. Unless there is a failure in modules, fibers, etc., loss of UDP order rarely happens; 
Secondly, YD provides the OMS notification functions. When investors receive an OMS notification, it means that the OMS has 
received the order. Even if it is lost, investors can still be aware of it. Please refer to the description of the OMS notifications in Order 
Notification for details.

To use UDP order transmission mode, set TradingProtocol=UDP in the API configuration file. Please refer to the Configuration File 
for details. If the OMS has not enabled UDP service, "false" will be returned every time the order interface is called. UDP order 
transmission mode does not have a dedicated thread for order submission. It will directly send orders in the thread that calls the 
order submission and cancellation interface. Therefore, please bind the calling thread to an isolated core to ensure the order 
submission performance.

2.2.3 XTCP order  

The overall penetration delay of XTCP order transmission mode is relatively low，and the time consumption of API order 
transmission itself is about 250 ns. The penetration delay of the OMS compared to UDP order transmission mode is increased by 
less than 100 ns. Its operation mode is the same as UDP, which is only available for submitting uplink orders, and the notification is 
still returned through the original TCP channel.

Compared with UDP order transmission mode, the problem of order loss for XTCP can be completely eliminated and the 
prolongation of penetration delay is relatively short. It is suitable for investors who do not trust the UDP protocol. However, since 
the maintenance cost of TCP connection protocol stack is higher than that of UDP, investors should be cautious about using XTCP 
connection. If an XTCP thread is used widely, it will impose significant pressure on the strategy host and the OMS.

To use XTCP order transmission mode, set TradingProtocol=XTCP in the API configuration file. Refer to the Configuration File for 
more details. If the XTCP service is disabled at the OMS, it will fall back to using TCP order transmission mode. Since the XTCP service 
is closed by default, please confirm with your broker whether they have enabled the XTCP service before using it. In most cases, 
XTCP will directly place orders in the thread that calls the order submission and cancellation interface. Therefore, please bind the 
calling thread to an isolated core to ensure order placement performance. TCP resend messages and TCP heartbeat messages are 
sent through a dedicated thread of XTCP. You can bind it by using the "XTCPTradingCPUID" parameter.

Starting from version 1.486, XTCP supports the network bonding of master-slave mode. As long as the master-slave mode bonding 
network cards are configured on the operating system, and the network cards involved in the bonding are high-performance 
network cards supported by YD, such as Solarflare X2522, Exanic X10, the API can automatically identify and support high-availability 
switching of the bonded network cards.

2.3 API thread  
After the initiation of the YD API, three threads will be created: TCP notification receiving, TCP market data receiving and a timer. 
Orders are sent directly by calling the thread of "insertOrder", and therefore no dedicated thread is provided for handling order 
submission.

2.3.1 TCP notification receiving thread  

The main task for the TCP notification receiving thread is to receive notifications and invoke YDListener callbacks, as well as 
heartbeats to OMSs. Most callbacks from YDListener or YDExtendedListener are initiated from this thread, except for 
"notifyMarketData". If the thread stays in a callback function for a long time (60 s) without exiting, it may cause a heartbeat timeout 
and lead to disconnection of the TCP connection.  Therefore, it is recommended for investors to keep the processing time of each 
callback function as short as possible. You can set "TCPTradingCPUID" in the API configuration file to specify the CPU core to bind to.

There are two network listening modes for the TCP notification receiving thread: Busy polling and Select. If the busy polling mode is 
selected, the notification receiving speed will be quicker, however, the CPU utilization rate under this mode will reach 100%. If the 
select mode is used, the thread will wait for the select timeout to continue with the next select, resulting in almost no CPU overhead. 
However, the notification receiving speed is slower compared to busy polling. The timeout value for the TradingServerTimeout can 
be set in the API configuration file. Please refer to the Trading Configuration for details.

In order to ensure fairness in all connections receiving trading flows through OMSs, the OMSs can switch to the next connection 
when pushing 20 trading flows each time to a particular connection. This prevents any account from having an impact on the 
notification received by other existing connections when collecting all trading flows while logged in.

YD Trading System C++ API Programming Guide

4 / 135

af://n48
af://n52
af://n56
af://n61
af://n63


2.3.2 TCP market data receiving thread  

The main task for the TCP market data receiving thread is to receive market data pushed by the gateway of the exchange, call back 
YDListener and send heartbeat messages to OMSs. The callback of notifyMarketData in YDListener is initiated from this thread, 
which is similar to the TCP notification thread. The processing of notifyMarketData also needs to be fast, otherwise it may cause the 
TCP connection of this thread to be disconnected. The CPU core to be bound can be specified by setting "TCPMarketDataCPUID" in 
the API configuration file.

There are two network listening modes for the TCP market data receiving thread: Busy polling and Select. If the busy polling mode is 
selected, the market data receiving speed will be quicker, but the CPU utilization rate will reach 100%. If the Select mode is selected, 
the select function will wait for a specified time before timing out and continuing to the next select, which has almost no CPU 
overhead. However, the speed of receiving market data is slightly slower compared to the busy polling mode, with a delay of a few 
microseconds. The timeout for "TCPMarketDataTimeout" can be set in the API configuration file. Please refer to the Market Data 
Configuration for more details.

2.3.3 Timer thread  

The timer thread is used for uniformly executing all timed tasks in the API. This thread wakes up regularly every other 1 millisecond. 
Each time the timer triggers, it asks each timed task whether to execute based on their own characteristics. At present, the timer 
thread is only used for notifying investors of the appropriate refresh time through Auto Mode of Fund Refresh Mechanism.

The timer thread cannot be turned off and can be bound to a specific CPU by setting the TimerCPUID in the API configuration file.

2.3.4 User-defined field  

YD Api supports two types of user-defined fields: local and remote. Local user-defined fields are only saved in the local memory of 
the API and will not be sent to the YD OMS. Remote user-defined fields will be sent to the counter through orders and quotes, and 
will be brought back in order notifications, quote notifications and trade notifications.

2.3.5 Local User-defined field  

To facilitate investors in storing user data in the structures of the YD, based on the stable characteristics of YD's pointers, YD 
provides four fields: pUser, UserFloat, UserInt1 and UserInt2, in YDExchange, YDProduct, YDInstrument, YDMarketData, 
YDCombPositionDef, YDAccount, YDAccountExchangeInfo, YDAccountProductInfo and YDAccountInstrumentInfo.

The API will not modify the data set in these fields, including the following special scenarios forever:

When calling the function of "startDestroy()" to destroy the API, the space stored in pUser will not be released automatically.

When a main-standby switchover occurs, as the above structure does not change, the data stored in the user-defined field will 
not be affected.

If the above fields are not sufficient to store user data, a structure can be defined and the pointer to that structure can be stored in 
pUser. Essentially, the API provides a continuous user-defined space of 24 bytes, where any value can be stored, breaking the API's 
pre-defined field boundaries for cross-field data storage. Investors can modify the field names, types, and numbers in the header 
file to meet actual needs, but ensure that the total length does not exceed 24 bytes.

2.3.6 Remote User-defined field  

Starting from version 1.486, a 32-byte UserRef field is added to orders and quotes. The UserRef will be returned through order 
notifications, quotation notifications and trade notifications. The API and the YD server will not use or modify the value of UserRef.

Although OrderRef and UserRef both remote user-defined fields that investors can fill in and bring back from various notifications, 
the difference is that OrderRef stores sequential data and will participate in the order and quotation reference number increment 
check. Therefore, it is not suitable to store categorical information in OrderRef through encoding, etc. UserRef is suitable for storing 
categorized and identifying information, such as strategy number, server number, etc. The 32-byte field length provides sufficient 
space for segmented storage of multiple information.

2.4 Version rule  
YD adopts a four-segment version number encoding rule with the format of a.b.c.d. Each release version will only modify one 
segment of the version number. YD makes the following commitments:

a: Protocol Version Number -  Changing the version number in this section will inevitably modify the protocol and render all 
previously released API versions incompatible. It may also include modifications to sections b and c. Only when the segment 
version number of the API is the same as that of OMSs, and the API version number a.b.c is lower than the OMSs' version 
number a.b.c, can the API function work properly on that version of OMSs. A higher version number in this section indicates a 
higher version, and if they are the same, the comparison continues with section b.

b: Function version number - Adding this segment version number certainly means adding new functions, which also include 
the modified content of Segment c. A higher version number in this section indicates a higher version, and if they are the same, 
the comparison continues with section c.

c: Patch version number - Increasing the version number in this segment can only contain bug-fixing patches and must be for 
an unreleased version. A larger version number in this segment indicates a higher version. If they are the same, continue 
comparing the d segment.

d: Emergency patch version number - A version with this segment version number added, in principle, means only the patch 
content for fixing an emergency Bug can be included, which must refer to an officially released production version. However, in 
order to cope with rapidly changing business needs, YD may have to add new functions to the emergency patch while ensuring 
the version compatibility. A larger version number in this segment indicates a higher version.

YD Trading System C++ API Programming Guide

5 / 135

af://n67
af://n70
af://n73
af://n75
af://n84
af://n87


YD promises that all investors use the same version of YD, and no so-called special versions will be provided. However, considering 
the upgrade strategy and specifications of YD, it should be understood that during the trial operation and upgrade process, some 
investors may use a higher version of the OMS that have not been officially released to the whole market. Wish investors 
understand:

After completing the internal testing phase of a version, YD will invite selected brokers who are willing and capable of taking 
risks, and possess strong operational and emergency handling capabilities in both business and technology, to conduct trial 
runs of the new version. The duration of the trial run is not fixed. The more content released in this version, the longer the trial 
run will usually last. Moreover, if new issues are fixed or new features are introduced during the trial run stage, the duration of 
the trial run will be further extended.

After the trial operation, YD will release the official version to the entire market. At this time, all brokers can gradually upgrade 
to the latest version in batches. To ensure that YD has sufficient service manpower to handle various problems that appeared 
during the upgrade process, the total number of upgrades per week will be limited during the first 1-2 weeks. Considering the 
current market share of the YD OMSs and the relatively conservative upgrading strategies adopted by some brokers, it will take 
2-3 months for the entire market to complete the upgrade.

2.4.1 API version compatibility  

Only when the segment version number of the API is the same as that of OMSs, and the segment version numbers a, b and c of the 
API are set between MinApiVersion and MaxApiVersion can the API connect and log in to OMSs normally, otherwise a log-in error 
message "YD_ERROR_TooHighApiVersion=62" or "YD_ERROR_TooLowApiVersion=58" will be received.

If brokers do not make special settings, the default MaxApiVersion of OMSs is equal to the version of the OMSs. Under special 
circumstances, the highest API version supported by OMSs can be modified by configuring the "MaxApiVersion" parameter of 
OMS. The MaxApiVersion can only be set using the a.b.c format for version numbers. Comparing only the a.b.c segments of the 
version number allow urgent patches (modifying the fourth segment of the version number) for the API to be compatible with 
older versions of the OMS.

If brokers do not make special settings, the default MinApiVersion of OMSs will be 1.0.0.

To obtain the current version, MaxApiVersion, and MinApiVersion of OMSs, please refer to System Parameters.

The version of API can be obtained by the following two different methods, or you can check the API version in the log file. For more 
details, please refer to Logging.

class YDApi

{

  virtual const char *getVersion(void); 

}

/// Same as getVersion inside YDApi, put here to get version without make api

YD_API_EXPORT const char *getYDVersion(void);

1

2

3

4

5

6

7

YD Trading System C++ API Programming Guide

6 / 135

af://n104


3 Life cycle  
3.1 Creation  
To create an API instance, you first need to determine whether to use ydApi or ydExtendedApi. The differences between these two 
APIs can be found in the API Selection. For more detailed distinctions, please refer to the relevant content in this document.

The process of creating an API is not allowed to call any system calls that create child processes, such as fork(), system(), exec(), 
vfork(), clone(), posi_spawn(), and so on, in order to avoid creating unexpected problems.

3.1.1 Create ydApi  

There are two ways to create ydApi. The argument to makeYDApi needs to be filled in with the path to the configuration file, and the 
API will read the configuration content from the file pointed to by the path; the argument to makeYDApiFromConfig is directly filled 
in with the content of the configuration file itself, which should be in the same format as the configuration file pointed to by the 
previous interface, i.e., the parameter name and parameter value consisting of a configuration pairs, separated by \n .

If ydApi is selected, the creation process is approximately as follows:

The makeYDApi function requires a configuration file as input. Please refer to the Configuration File for instructions and an example 
of how to configure it.

The YDExampleListener mentioned above is a subclass of the YDListener, which is implemented by the investors themselves. All 
notification information is sent to the strategy program through the callback function of this subclass. Since the instance of 
YDListener is created by the strategy program, its life cycle should be maintained by the strategy program, which can be destroyed 
when necessary. The callback function of YDListener will be introduced in each functional section of this document.

The API can be started by calling ydApi.start and the parameter "pListener" cannot be empty. The notification will be made 
immediately without blocking after the function call. To prevent the program from exiting directly, the strategy program needs to 
add blocking code after a successful call. 

3.1.2 Create ydExtendedApi  

There are two ways to create ydExtendedApi. The argument to makeExtendedYDApi needs to be filled in with the path to the 
configuration file, and the API will read the configuration content from the file pointed to by the path; the argument to 
makeExtendedYDApiFromConfig is directly filled in with the content of the configuration file itself, which should be in the same 
format as the configuration file pointed to by the previous interface, i.e., the parameter name and parameter value consisting of a 
configuration pairs, separated by \n .

If ydExtendedApi is selected, the creation process is roughly as follows:

It can be seen that except for calling makeYDExtendedApi to create an API instance, the other steps are the same as those for ydApi.

YDApi *makeYDApi(const char *configFilename)

YDApi *makeYDApiFromConfig(const char *configDesc)

1

2

// Create YDApi

YDApi *pApi=makeYDApi(configFilename);

if (pApi==NULL)

{

    printf("can not create API\n");

    exit(1);

}

// Create listener of Api

YDExampleListener *pListener=new YDExampleListener(...);

/// Start Api

if (!pApi->start(pListener))

{

    printf("can not start API\n");

    exit(1);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

virtual bool start(YDListener *pListener);1

// Create YDApi

YDExtendedApi *pApi=makeYDExtendedApi(configFilename);

if (pApi==NULL)

{

    printf("can not create API\n");

    exit(1);

}

// Create listener of Api

YDExampleListener *pListener=new YDExampleListener(...);

/// Start Api

if (!pApi->start(pListener))

{

    printf("can not start API\n");

    exit(1);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

YD Trading System C++ API Programming Guide

7 / 135

af://n114
af://n116
af://n119
af://n128


In order to facilitate users of the ydExtendedApi in receiving notifications about changes in extended messages, "startExtended" can 
be used to receive callback notifications from YDListener and YDExtendedListener at the same time when starting API.

The function signature of "startExtended" is as follows：both parameters "pListener" and "pExtendedListener" shall not be empty. 
Except for the addition of the callback notification of "YDExtendedListener", this function is identical to "start":

The definition of "YDExtendedListener" is as follows. Compared to the structure sent back by "YDListener", the extended structure 
sent back by YDExtendedListener contains more information, which can facilitate investors in writing code. Please refer to 
ydDataStruct.h for the specific content of each extended structure.

3.1.3 Configuration file  

When calling the makeYDApi method, the configuration file used by the client should be specified. The configuration file contains 
parameters mainly classified into three categories:

Network configuration, including the IP address and port of ydServer. Please always fill in the port blank with the TCP port 
information provided by brokers. Other ports, including the UDP order port and TCP market data port, will be automatically 
provided after logging in. The option to enable UDP order transmission mode is controlled by the UDPTrading parameter.

Trading configuration, including whether to use UDP for order transmission mode and selecting the working mode of the 
thread receiving the notification.

Market data configuration, including receiving the TCP or UDP market data from ydServer or not.

The following shows the best practice template of the client configuration file provided by ydApi for the production environment. 
The final effect of this template is that:

UDP order transmission mode can be used;

// YDExample7Listener implements both YDListener and YDExtendedListener interfaces.

class YDExample7Listener: public YDListener, public YDExtendedListener {}

// Create YDApi

YDExtendedApi *pApi=makeYDExtendedApi(configFilename);

if (pApi==NULL)

{

    printf("can not create API\n");

    exit(1);

}

// Create listener of Api

YDExample7Listener *pListener=new YDExample7Listener(...);

/// Start Api, YDExtendedListener is used here

if (!pApi->startExtended(pListener,pListener))

{

    printf("can not start API\n");

    exit(1);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

virtual bool startExtended(YDListener *pListener,YDExtendedListener *pExtendedListener);1

class YDExtendedListener

{

public:

    virtual ~YDExtendedListener(void)

    {

    }

    // all address of parameters in following methods are fixed

    virtual void notifyExtendedOrder(const YDExtendedOrder *pOrder)

    {

    }

    virtual void notifyExtendedTrade(const YDExtendedTrade *pTrade)

    {

    }

    virtual void notifyExtendedQuote(const YDExtendedQuote *pQuote)

    {

    }

    virtual void notifyExtendedPosition(const YDExtendedPosition *pPosition)

    {

    }

    virtual void notifyExtendedAccount(const YDExtendedAccount *pAccount)

    {

    }

    // notifyExchangeCombPositionDetail and notifyExtendedSpotPosition will only be used when trading 

SSE/SZSE

    virtual void notifyExchangeCombPositionDetail(const YDExtendedCombPositionDetail 

*pCombPositionDetail)

    {

    }

    virtual void notifyExtendedSpotPosition(const YDExtendedSpotPosition *pSpotPosition)

    {

    }

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

YD Trading System C++ API Programming Guide

8 / 135

af://n139


TCP notifications can be received under the busy query mode, quickening the acquisition of notifications and binding the 
receiving thread to CPU 3.

The RecalcMode feature for fund recalculation has been enabled. The setting for "ConnectTCPMarketData=no" will be 
overwritten as "yes", meaning market data will be received.

###########################################

######### Network configurations  #########

###########################################

# Count of recovery site. Used to achieve high availablity at the expense of a little performance of 

order notification.

# 0 for no recovery, 1 for recovery always use primary site, 2 for recovery use primary and secondary 

sites

RecoverySiteCount=0

# IP address of primary trading server

TradingServerIP=127.0.0.1

# TCP port of primary trading server, other ports will be delivered after logged in

TradingServerPort=51000

# IP address of secondary trading server. 

# Valid only when RecoverySiteCount equals to 2.

TradingServerIP2=

# TCP port of secondary trading server, other ports will be delivered after logged in. 

# Valid only when RecoverySiteCount equals to 2.

TradingServerPort2=

###########################################

######### Trading configurations  #########

###########################################

# Choose trading protocol, optional values are TCP, UDP, XTCP

TradingProtocol=UDP

# Affinity CPU ID for thread to receive order/trade notifications, -1 indicate no need to set CPU 

affinity

TCPTradingCPUID=-1

# Affinity CPU ID for thread to send XTCP trading, -1 indicate no need to set CPU affinity

XTCPTradingCPUID=-1

# Timeout of select() when receiving order/trade notifications, in millisec. -1 indicates running without 

select()

TradingServerTimeout=-1

# Work mode for recalculation of margin and position profit. Valid when using ydExtendedApi.

#     auto(default): subscribe market data and automatically recalculate in proper time.

#     subscribeOnly: subscribe market data and recalcMarginAndPositionProfit should be called explicitly

#     off: never do recalculation

RecalcMode=auto

# Gap between recalculations, in milliseconds. Valid when RecalcMode is set to auto.

# It will be adjusted to 1000 if less than 1000

RecalcMarginPositionProfitGap=1000

# Delay of recalculation after market data arrives to avoid collision with input order, in milliseconds.

# Valid when RecalcMode is set to auto. Should be between 0 and 100.

RecalcFreeGap=100

###########################################

####### MarketData configurations  ########

###########################################

# Whether need to connect to TCP market data server

ConnectTCPMarketData=no

# Timeout of select() when receiving TCP market data, in millisec. -1 indicates running without select()

TCPMarketDataTimeout=10

# Affinity CPU ID for thread to receive TCP market data, -1 indicate no need to set CPU affinity

TCPMarketDataCPUID=-1

# Whether need to receive UDP multicast market data

ReceiveUDPMarketData=no

###########################################

######### Other configurations  ###########

###########################################

AppID=yd_dev_1.0

AuthCode=ecbf8f06469eba63956b79705d95a603

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

YD Trading System C++ API Programming Guide

9 / 135



3.1.3.1 Network configuration  

The network configuration includes the IP address and port of the YD OMS. When trading in the production environment, please 
consult the technical department of the related broker for specific configuration details.

RecoverySiteCount: Count of high availability sites. When it is set to 0, the high availability feature for the API is not enabled. When 
set to 1, the high availability of the single OMS is enabled. When the OMS is restarted, the API will reconnect to the OMS and recover 
to the latest state as much as possible, preventing direct termination of the API. When set to 2, the primary-secondary dual OMS 
high availability feature is enabled. If the primary OMS fails, the backup OMS(specified in TradingServerIP2 and TradingServerPort2) 
will start, and the API will reconnect to the OMS and recover to the latest state. The use of high availability will result in little loss of 
notification performance.

TradingServerIP: IP address of the YD OMS. 

TradingServerPort: The port of YD OMS. YD OMS usually opens three ports, which are TCP trading, TCP market data and UDP 
trading. The XTCP trading and UDP market data ports are closed by default. The TradingServerPort should be filled in with the TCP 
trading port. Other ports will be automatically provided to the client by the OMS after a successful login. Do not fill in the 
TradingServerPort with the UDP trading port, otherwise the YD OMS will not be connected. If orders are to be sent through UDP or 
XTCP, the parameters TradingProtocol=UDP or TradingProtocol=XTCP should be used for control.

UDPTradingServerPort: The port for UDP transmission mode. It is automatically provided by the OMS and is usually unnecessary 
to be filled in. However, when accessing the OMS from an external network through NAT, the port for the UDP transmission mode 
may change. In such cases, the assigned port will not be able to receive UDP order data correctly. Therefore, it is necessary to 
configure this parameter according to the actual port provided by the broker.

XTCPTradingServerPort: The port for XTCP transmission mode. It is automatically provided by the OMS and is usually unnecessary 
to be filled in. However, when accessing the OMS from an external network through NAT, the port for the XTCP transmission mode 
may change. In such cases, the assigned port will not be able to receive XTCP order data correctly. Therefore, it is necessary to 
configure this parameter according to the actual port provided by the broker.

TCPMarketDataServerPort: The port for TCP market data. It is automatically provided by the OMS and is usually unnecessary to be 
filled in. However, when accessing the OMS from an external network through NAT, the external port for the market data may 
change. In such cases, the assigned port will not be able to receive market data correctly. Therefore, it is necessary to configure this 
parameter according to the actual port provided by the broker.

TradingServerIP2: The IP address of YD backup OMS. This is effective only when the RecoverySiteCount is set to 2.

TradingServerPort2: The port number of YD backup OMS. The setting method is the same as TradingServerPort. It will be enabled 
when RecoverySiteCount is set to 2.

UDPTradingServerPort2: The UDP trading port of YD standby OMS. Its operation method is the same as that for 
UDPTradingServerPort. It will be enabled when RecoverySiteCount is set to 2.

XTCPTradingServerPort2: The XTCP trading port of YD standby OMS. Its operation method is the same as that for 
XTCPTradingServerPort. It will be enabled when RecoverySiteCount is set to 2.

TCPMarketDataServerPort2: The TCP market data port of YD standby OMS, the operation method is the same as that for 
TCPMarketDataServerPort. It can be enabled when RecoverySiteCount is set to 2.

3.1.3.2 Trading configuration  

TradingProtocol: Order transmission mode. The optional order transmission modes are TCP, UDP and XTCP. Since the overall 
penetration performances of UDP and XTCP are much better than that of TCP, it is suggested to use UDP or XTCP order 
transmission mode in the production environment. In order to ensure compatibility, if TradingProtocol is not set, the original 
configuration UDPTrading will be used.

UDPTradingType The implementation options for the UDP transaction sender are automatic, sf, exa, and socket. If this parameter 
is not specified, the default value is automatic. "socket" represents using the standard socket protocol stack, "sf" represents using 
Solaflare's ef_vi, "exa" represents using Exanic, and "automatic" represents automatically selecting an appropriate sender 
implementation, which can be one of sf, exa, or socket. Due to the complexity of the production environment, there are cases where 
the sender implementation of other applications and the YD API are incompatible. This can result in automatic degradation of the 
API to socket sending, significantly reducing the API's sending performance. Therefore, it is recommended that investors using UDP 
trading enforce the corresponding sender implementation method. In case of conflicts, there will be significant error prompts or the 
YD API application may fail to start, making the problem easier to detect and avoiding significant performance degradation for 
investors who are unaware of the situation.

TCPTradingCPUID: For setting the affinity of the TCP sending order and receiving notification threads. - 1 means that no affinity 
needs to be set. Otherwise, it is the number of the CPU/Core.

XTCPTradingCPUID: For setting the affinity of the XTCP order sending thread. - 1 means that no affinity needs to be set. Otherwise, 
it is the number of the CPU/Core.

TradingServerTimeout: This parameter specifies how the TCP trading and receiving threads of YDListener use the listening 
network communication. When set to a positive integer value, it means that the thread can be used to listen the arrival of network 
data through the POSIX Select Mechanism. The listening gap is a specified value in milliseconds. When set to -1, the receiving thread 
will read messages in a non-blocking manner, and its CPU utilization rate will reach 100%. If the client does not allocate CPU/Core 
properly based on its own machine configuration and set the affinity between the thread and CPU/Core, it will severely impact the 
performance and significantly increase the latency of the client program.

RecalcMode: Recalculation mode of margin and position profit/loss. The default value under this mode is "auto".

auto: The margin and position profit/loss can be recalculated by API. API will automatically subscribe to the market data 
required for calculations. The refresh interval and delay time from the market can be controlled through the parameters 
"RecalcMarginPositionProfitGap" and "RecalcFreeGap". The TCP market data will be received forcefully.

YD Trading System C++ API Programming Guide

10 / 135

af://n157
af://n170


subscribeOnly: Only helps to automatically subscribe to the required market data, but investors need to call the 
"recalcMarginAndPositionProfit" method to recalculate. The TCP market data will be received forcefully.

off: The margin and position profit/loss will not be recalculated. Investors should generally avoid using this mode.

RecalcMarginPositionProfitGap: The interval between two recalculations, measured in milliseconds. The default value is 1000ms. 
The minimum value is 1000ms, and If it is set below 1000ms, the system will automatically adjust it to 1000ms. This parameter is 
only effective when RecalcMode is set to "auto".

RecalcFreeGap: The time interval for delayed market data. In order to avoid clashes with the order submission time as much as 
possible, the recalculation should be made before or after the arrival of market data if possible. Investors can adjust the parameter 
based on different exchanges so that the market data can be recalculated during periods of low order activity. The unit is 
milliseconds, with a default value of 100 milliseconds. The delay must be kept within 0 - 100ms. When greater than 100ms, this value 
will be adjusted to 100ms. When less than 0, this value will be adjusted to 0. This parameter is only effective when RecalcMode is set 
to "auto".

OperWay: Specify the operation mode in spot trading. If the operation mode entered is not within the range of operation modes 
allowed for this investor, login will not be allowed(only works in the spot system). Most of the securities companies only support 
single character operation mode, individual securities companies need to use double characters or more operation mode, according 
to the requirements of the securities company to fill in.

3.1.3.3 Market data configuration  

Please note that both TCP market data and UDP multicast market data from YD are not high-speed market data. At present, they 
can only be used by YD's server and client for calculating the margin and position profit/loss. If market data is needed for in 
production trading, please contact the related broker to receive the multicast market data.

ConnectTCPMarketData: Connect to the TCP market data service of ydServer or not. "Yes" means "Receiving allowed", and "No" 
means "Receiving not allowed".

TCPMarketDataTimeout: This parameter specifies how the TCP market data receiving thread of YDListener use the listening 
network communication. When set to a positive integer value, it means that the thread can be used to listen the arrival of network 
data through the POSIX Select Mechanism. The listening gap is a specified value in milliseconds. When set to -1, the receiving thread 
will read messages in a non-blocking manner, and its CPU utilization rate will reach 100%. If the client does not allocate CPU/Core 
properly based on its own machine configuration and set the affinity between the thread and CPU/Core, it will severely impact the 
performance and significantly increase latency of the client program.

TCPMarketDataCPUID: For setting the affinity of the TCP market data receiving thread. - 1 means that no affinity needs to be set. 
Otherwise, it is the number of the CPU/Core.

ReceiveUDPMarketData: Receive UDP multicast market data sent by ydServer or not. At present, the UDP multicast market data 
function of all YD OMSs is turned off. Please always keep this parameter as "No".

3.1.3.4 Other configurations  

TimerCPUID: For setting CPUID of the timer thread for API.

AppID and AuthCode: When investors set AppID and AuthCode in the configuration file. When calling the function "login", they can 
leave the appID and authCode parameters as "NULL", and the API will then use the values configured in the configuration file.

LogDir: For specifying the log directory generated by ydApi ("log" by default). The directory will not be created automatically and 
needs to be manually created. If the corresponding directory does not exist, no log files will be generated.

3.1.3.5 User-defined configguration  

YD supports reading configuration content from configuration files. Investors can not only read the configuration information of YD 
API, but also put the user-defined configuration in YD's configuration file, which can be then accessed through the YD API.

When investors set user-defined configuration items, they should name them in the format of "Application name. parameter name", 
for example, MyApp.Username. Though a parameter without an application name can still be entered directly and used, but the API 
will report a warning message stating that the parameter is not being used when it starts. To avoid confusion, it is not 
recommended to use parameters without an application name.

YD's user-defined configuration supports the listed parameters. Multiple parameters with the same name can be set to achieve this 
effect. The following shows the examples:

The YD API provides two methods for obtaining customized parameters. The first method obtains a single customized parameter, 
and when it is a listed parameter, it returns the first set value in that list. The second method can obtain all parameter values of a list 
parameter. The notified result set needs to be manually destroyed by the investor after being used up through calling "destory()". 
When used for a single custom parameter, it will return a YDQueryResult collection containing a single element, which also needs to 
be destroyed using the "destroy()" function provided by the API to free up allocated memory.

MyApp.TradeExchange=SHFE

MyApp.TradeExchange=INE

MyApp.TradeExchange=CFFEX

MyApp.TradeExchange=DCE

MyApp.TradeExchange=CZCE

1

2

3

4

5

/// get first config using this name in config file (parameter of makeYDApi or makeYDExtendedApi), NULL if 

not found

virtual const char *getConfig(const char *name);

/// get all configs using this name,  user should call destroy method of return object to free memory 

after using

virtual YDQueryResult<char> *getConfigs(const char *name);

1

2

3

4

YD Trading System C++ API Programming Guide

11 / 135

af://n187
af://n193
af://n197
af://n204


failed

Connect
notifyEvent

TCPTradeConnected
ReadyForLogin

login

notifyLogin notifyFinishInit

notifyOrder

notifyTrade

notifyCaughtUp

3.2 Start  
After creating an API instance and calling "start" or "startExtend" to start the API, the API will complete the startup initialization 
process according to the following steps.

3.2.1 Connect  

After the instance is started, it will continuously connect to the OMS address and TCP port specified by TradingServerIP and 
TradingServerPort respectively until the connection is successful. Once connected, After the successful connection, a callback 
message showing "Connected" will be sent through "notifyEvent"(YD_AE_TCPTradeConnected).

If the API is configured with dual-host high availability mode, it will cycle through the primary OMS address and TCP port specified by 
TradingServerIP and TradingServerPort, as well as the backup OMS address and TCP port specified by TradingServerIP2 and 
TradingServerPort2, until a successful connection is established. After the successful connection, a callback message showing 
"Connected" will be sent through "notifyEvent"(YD_AE_TCPTradeConnected).

3.2.2 Login  

After the successful connection, the strategy program will be notified immediately through the callback function 
"notifyReadyForLogin" that it is ready to attempt a login. The parameter "hasLoginFailed" in this callback function refers to whether 
the initiation of the "notifyReadyForLogin" callback is caused by the last login failure. If yes, it will be unnecessary to log in again with 
exactly the same information since the failure is inevitable.

After receiving the "notifyReadyForLogin" callback notification, the strategy program should typically call the "login" function 
immediately to initiate the "login". The login function signature is shown below:

If appID and authCode are set to NULL, the API will use the AppID and AuthCode specified in the configuration file. If these two 
parameters are not configured in the configuration file, an error will be caused;

If appID and authCode are set to specific values, the API will only use the parameters specified in the interface and will not use 
the values specified in the configuration file.

 

username should be the account number, and password should be the password corresponding to the account number. For more 
information about password, please refer to password. For more information about AppID and AuthCode, please refer to AppID and 
authCode.

The following shows a code example of login. (In this example, AppID and AuthCode are defined in the configuration file, so those 
two parameters are filled with NULL):

The login result will be sent back through the callback of the function  "notifyLogin" callback:

If the errorNo of notifyLogin is "0", it means that the "login" is successful. If "isMonitor" is true, it indicates that the currently logged-
in user is the OMS administrator. If the logged-in user is an ordinary investor, it must be "false". maxOrderRef represents the 
maximum OrderRef received by the OrderGroupID 0 of the OMS at the time of login. For the maximum OrderRef of all order groups, 
please refer to Order Group. Except for the following three cases, no matter whether an order or quote order is successful or not, as 
long as the OrderRef of the new order or quote order is greater than the current MaxOrderRef of the order group, the MaxOrderRef 
of the current account will be modified to be the OrderRef of the order:

Failed orders and quotes caused by the monotonic increase check of the order number will not be included in MaxOrderRef;

Failed orders and quotes with order account identification failure due to the error of the network data packet received by 
OMSs will not be counted in MaxOrderRef. This error should not occur in general and It often occurs in cases where investors 
try to break our company's protocol to place orders or quote orders.

Failed orders caused by submitting the quote at an OMS that does not support the quote instruction (license file does not have 
market maker flag) will not be counted in MaxOrderRef.

virtual void notifyReadyForLogin(bool hasLoginFailed)1

virtual bool login(const char *username,const char *password,const char *appID,const char *authCode);1

virtual void notifyReadyForLogin(bool hasLoginFailed)

{

    if (!m_pApi->login(m_username,m_password,NULL,NULL))

    {

        printf("can not login\n");

        exit(1);

    }

}

1

2

3

4

5

6

7

8

virtual void notifyLogin(int errorNo,int maxOrderRef,bool isMonitor)1

YD Trading System C++ API Programming Guide

12 / 135

af://n204
af://n207
af://n210


Error
No.

Error definition Description

12 YD_ERROR_InvalidClientAPP AppID or AppAuthCode error.

18 YD_ERROR_AlreadyLogined Current API login completed. Re-login is not allowed.

19 YD_ERROR_PasswordError Wrong login password.

20 YD_ERROR_TooManyRequests The number of login requests is beyond the limit.

21 YD_ERROR_InvalidUsername Invalid login user.

27 YD_ERROR_InvalidAddress
The IP address of the client is not in the address range allowed for logging in. It is
only valid for the administrator.

35 YD_ERROR_ClientReportError
Failure in collecting the look-though regulation information. Please refer to Look-
through Regulation for more details.

50 YD_ERROR_TooManyLogines

The license file of OMS restricts the number of accounts that can log in at the
same time. When the login limit is reached, the subsequent accounts will not be
able to log in unless the existing ones log out. No matter how many connections
an account has, it is counted as one login account. In other words, only when all
connections of the account are logged out and YDAccount.LoginCount is 0, the
account can be regarded as logged out.

58 YD_ERROR_TooLowApiVersion
The API version is lower than the lowest version required by the OMS. Please
refer to API Version Compatibility for details.

59 YD_ERROR_PasswordNotSet The password is not set.

62 YD_ERROR_TooHighApiVersion
The API version is higher than the highest version supported by the OMS. Please
refer to API Version Compatibility for details.

After a successful login, the TCP market data port and UDP trading port issued by the OMS can be received by API. Therefore, it 
unnecessary for YD to specify the market data port, UDP trading port and XTCP trading port in the configuration file. However, in 
certain scenarios, such as accessing the OMS from the Internet, the mapped Internet port is usually different from the port issued 
by the OMS. If not processed, it will cause TCP market data connection failure or UDP trading being unable to send to the OMS. In 
this case, the TCP market data port or UDP trading port can be set mannually to override the automatically issued ports. The 
"TCPMarketDataServerPort" can be used to override the market data port, "UDPTradingServerPort" to override the UDP trading 
port, and "XTCPTradingServerPort" to override the XTCP trading port. If the dual-host high availability mode is configured, the 
"TCPMarketDataServerPort2" can be used to override the market data port of the standby OMS, the "UDPTradingServerPort2" to 
override the UDP trading port of the standby OMS, and the "XTCPTradingServerPort2" to override the XTCP trading port of the 
standby OMS.

If the "errorNo" of "notifyLogin" is not 0, it means that the login fails. The errorNo will inform the specific reason for the failure and it 
is unnecessary to use maxOrderRef and isMonitor since they are meaningless at this time. The API will wait for 3 s and then 
continue to callback "notifyReadyForLogin" to wait for the user to send a login request. At this time, the "hasLoginFailed" of 
"notifyReadyForLogin" will be set to "true". The reasons for login failure may include:

3.2.2.1 Password  

YD OMS support both local password authentication and unified authentication. Futures companies and most securities companies 
generally use the local password authentication where passwords are saved at the server. While some securities companies have 
established a unified authentication system and require YD OMS to access and use the system to authenticate the password 
entered by the investor when logging in.

When passwords are managed by the YD OMS locally, you can set the complexity and validity period of the password. When 
password are managed by the unified authentication system, you can not set the complexity and validity period of the password or 
use API to change the password. The following descriptions of password complexity and validity period are limited to local password 
authentication.

The password complexity includes both the minimum password length and the number of character sets:

The minimum password length refers to the minimum length that a new password must meet when changed. However, 
because the maximum password length for YD OMS is 64 bytes, the password length should be between the minimum 
password length and 64 bytes.

The number of character sets in a password refers to the minimum number of character types that must be included when 
changing the password. Character types include digits, lowercase letters, uppercase letters, and symbols, with the specified 
symbols being limited to (+-*/'`"@#_$%&|~^ ()[]{},.:;!?<>=). The number of character sets can be a number between 0 and 4: 0 
indicates no restriction (allowing the use of any characters beyond the four specified sets), while 1-4 mandates the presence of 
at least n types of character sets in the password.

3.2.2.1.1 Password Validity Period  

By default, the passwords of the investor and the administrator are permanently valid. However, brokers can set the validity period 
of the password for investors and administrators respectively. When the password expires, you can still log in to the YD OMS, but at 
this time, you can only modify the password, but cannot do any trading. After the password is successfully changed, you can use the 
current API instance to start trading directly without reconnecting and logging in.

YD OMS uses the following callback method to notify investors and administrators to change the password when it expires, as well 
as to remind investors and administrators of the remaining validity of the password. This method is called upon successful login.

YD Trading System C++ API Programming Guide

13 / 135

af://n285
af://n294


When the password expires, YD OMS will push a message to the API that the password has expired, and the ServerNoticeType of 
pServerNoticed in the above callback method is set to YD_SNT_PasswordExpired, at which time the investor or the administrator 
must change the password in order to continue trading.

When the password expiration date is less than 15 days, YD OMS pushes a message to the API that the password expiration date is 
approaching. pServerNoticed's ServerNoticeType in the above callback method is set to YD_SNT_PasswordNearExpiration. 
PasswordNearExpirationInfo.RemainDayCount is set to the number of days remaining.

Both of these types of messages are written to the API's log at the same time.

3.2.2.2 Look-through regulation  

According to regulatory requirements, the look-through regulation is mainly consisted of two parts. The first part is to specify the 
AppID and AuthCode of the client system during login, and the second part is to report information about the login system's server. 
The following will introduce these two parts separately.

3.2.2.2.1 AppID and AuthCode  

AppID and AuthCode are essentially the username and password of the client system, such as the strategy system, that uses API to 
access the OMS. The client system must first meet brokers' access testing requirements before connecting to the OMS. After passing 
the test, the broker will add the AppID and AuthCode representing the system to the OMS. Then,  any account can connect to the 
OMS through this client system. It is obviously that the AppID and AuthCode of the client system are not bound to the username 
and password of an investor account.

The ydClient client provided by YD has its own fixed AppID and AuthCode embedded within the client. The AppID and 
AuthCode of this client are also added by default to the list of allowed systems on the OMS. Therefore, any investor can log in 
to the OMS through ydClient.

YD does not restrict the naming format of AppID, but there are regulatory requirements for AppID. It is suggested to name your 
client system according to regulatory requirements. Specific requirements for AppID are as follows:

AppID consists of three parts, namely manufacturer name, software name and version number. The maximum length of each 
part is 10, 10 and 8 characters respectively.

AppID should follow the following format: manufacturer name_software name_version number, e.g.: yd_client_1.0;

For terminal software developed by individuals, the manufacturer name should be fixed as "client". Since most investors using 
the YD system have their own self-developed systems, the manufacturer name should be fixed as "client".

Futures company are supervised by the Margin Monitoring Center. Therefore, in futures companies' YD OMSs, you need to enter a 
valid AppID and AuthCode , otherwise you cannot log in. Securities companies are not supervised by the Margin Monitoring Center. 
Therefore, in securities' YD OMSs, AppID and AuthCode can be set to NULL, and the YD OMS will not vierify these two parameters.

By default, the AppID of the client system is not bound to the investor account, that is, the client system can be shared by all 
investors. However, in fact, most of the client systems connected to YD OMS are exclusive strategy systems developed by investors 
themselves. In response to the compliance requirements of brokers, YD OMS have provided the function of binding account with 
AppID since version 1.486. When this function is enabled, only the bound account can use the AppID. If you use an AppID that is not 
bound to any account when logging in, you will receive the error YD_ERROR_InvalidClientAPP.

3.2.2.2.2 Information collection  

The information that needs to be collected for regulation includes two parts, one of which must be collected from the client server 
and the other can be collected from the OMS. YD API will automatically collect the client server information for regulation from the 
client server. The information collected varies depending on the type of terminal operating system. The following only shows the 
information collected from the client server:

By default, the API will collect penetrating supervision information when the dynamic link library is loaded. You can delay the 
collection of penetrating supervision information to when the API is started by adding the environment variable YD_DCINFO. 
YD_DCINFO can be any value.

During the information collection process in Linux system, BIOS SNs can be collected by YD API through the dmidecode 
program. Generally, if no special settings are made, normal users do not have the execution permission of this program. Users 
running the client system must add the execution permission of this program to ensure a complete information collection. YD 
will first check whether dmidecode has been given suid. If it has, it will be executed directly. If not, it will be executed through 
sudo dmidecode. Investors can add suid to this program through the command "chmod +x /usr/sbin/dmidecode".

When the OMS parameter "ClientReportCheck" is set to "enforce", if the OMS finds incomplete collection information during the 
information collection check, such as the hard disk SN of the second Linux sample mentioned above is not collected, the client login 
will not be allowed, and a login error of "YD_ERROR_ClientReportError" will be generated. The following shows the operating system 
commands used by YD API for information collection. If the collected information is found incomplete, please manually execute the 
corresponding collection method to confirm whether the command execution results are normal. Please execute the command 
with the same operating system user as the client system to ensure that problems caused by insufficient permissions (the majority 
of the reasons for failing to obtain data) are discovered.

Windows Hard disk SN: Get-WmiObject -Query "SELECT SerialNumber FROM Win32_PhysicalMedia";

Windows CPU SN: Get-WmiObject -Query "SELECT ProcessorID FROM Win32_Processor";

virtual void notifyServerNotice(const YDServerNotice *pServerNotice)1

Windows: Terminal Type (fixed to 1) @ Information Collection Time @ Private Network IP1 @ Private Network 

IP2 @ Network Card MAC Address 1 @ Network Card MAC Address 2 @ Device Name @ Operating System Version @ 

Hard Disk SN (serial number) @ CPU SN @ BIOS SN @ System Disk Partition Information.

Linux: Terminal Type (fixed to 2) @ Information Collection Time @ Private IP1 @ Private IP2 @ Network Card 

MAC Address 1 @ Network Card MAC Address 2 @ Device Name @ Operating System Version @ Hard Disk SN @ CPU 

SN @ BIOS SN.

1

2

YD Trading System C++ API Programming Guide

14 / 135

af://n302
af://n304
af://n318


Windows BIOS SN: Get-WmiObject -Query "SELECT SerialNumber FROM Win32_BIOS";

Linux Hard Disk SN: First, find the device NAME whose TYPE is "disk" through "/bin/lsblk -dn -o TYPE,NAME", and then call 
"/sbin/udevadm info –query=all –name=/dev/{NAME}" to get the serial number of this device;

Linux BIOS SN: /usr/sbin/dmidecode -s system-serial-number.

3.2.2.3 Trading day  

The Trading day can be sent back to the API together with the login notifications starting from the "notifyLogin" callback, and 
investors can use getTradingDay to get the trading day.

Trading days of YD OMSs are calculated based on the system time (For day trading hours, a trading day is set as the date of that 
natural day. The trading day before 24:00:00 (in night trading hours) is considered as the date of the next non-holiday, and after 
24:00:00 (in night trading hours), if that natural day is a trading day, will be considered as the date of that natural day. If that natural 
day is a holiday, the trading day will be considered as the date of the next non-holiday). The Trading day calculated based on the 
production environment is usually accurate, but in the testing environment, it may be inconsistent with 
"YDMarketData.TradingDay", which is probably because that a past preday data has been used, the trading day of the exchange's 
test environment is not switched, or a man-made trading day is used during a weekend test.

3.2.3 Receive static data  

In order to reduce the impact of the OMS queries on the OMS, all query services of YD are executed locally, which requires that the 
client and server have exactly the same data. This principle applies to both ydApi and ydExtendedApi. The difference is that ydApi 
only involves static data, while ydExtendedApi like the OMS, in addition to having static data, also manages dynamic data such as 
funds, positions, orders, trades and so on. Therefore, query services for funds, positions, orders and trades on ydExtendedApi are 
also provided locally.

Static data refers to the data that will not change within a trading day, such as the instrument, preday margin rate, preday 
commission rate, and account settings, etc. Each type of preday data has its corresponding structure for data storage, for example, 
the instrument data and account data correspond to "YDInstrument" and "YDAccount", respectively. Because some structures 
contain both static data and dynamic data at the same time, for example, the presettlement price (PreSettlementPrice) in the 
market data structure "YDMarketData" is static data, however the last price (LastPrice) is dynamic data. During the static data 
collection phase, a YD OMS only sends static data and does not guarantee the correctness of the dynamic data part of the structure.  
Therefore, it is necessary to only use the static data in each structure during the static data collection phase, and do not use 
dynamic data,otherwise unknown errors may be caused. The static and dynamic parts of each data structure will be indicated 
separately in the following text. Unless otherwise specified, all fields in the whole structure corresponding to these static data are 
static.

As the volume of preday data significantly increases, especially the traditional portfolio positions defined by DCE, the time 
required to receive static data has increased significantly. In order to accelerate the transmission speed, in version 1.386, 
when the API of version 1.386 is integrated with the trading system of the version 1.386, the trading system will send 
compressed preday data, thereby greatly reducing the transmission time. Therefore, if you want to speed up the reception of 
static data, please upgrade the API to the version 1.386.

After a successful login, the OMS will start to push static data. After the data is received by API, the market data connection and 
XTCP (if enabled) connection will be established. The "notifyFinishInit" will be called back to notify the strategy program that all static 
data has been loaded regardless of whether the connection is successful or not, which provides investors a time point to prepare 
for the subsequent receipt of order and trade notifications, including obtaining information such as preday funds, positions, margin 
rates, and commission rates, etc.

In addition to knowing the completion of the static data push through the callback function, YD API also provides a synchronous 
query function to check whether the static data push is completed. If you do not want to receive callback messages during the static 
function receiving phase, this function can be used to determine whether the current initialization data is complete or not.

The static data of YD will be introduced one by one below. The functions involved in the following content can be used normally in 
"notifyFinishedInit" callback and afterwards.

3.2.3.1 Exchanges  

YD currently supports a total of 8 exchanges, including China Financial Futures Exchange (CFFEX), Shanghai Futures Exchange (SHFE), 
Shanghai International Energy Exchange (INE), Dalian Commodity Exchange (DCE), Guangzhou Futures Exchange (GFEX), China 
Zhengzhou Commodity Exchange (CZCE), Shanghai Stock Exchange (SSE, option) and Shenzhen Stock Exchange (SZSE, option). It also 
supports configuring connections to all exchanges on one OMS. SHFE and INE are usually configured on one YD OMS, and therefore, 
YD provides two sets of methods for traversing and searching for exchanges, as shown below:

The first two methods can be used for traversing all exchanges, the specific methods are shown in the code below:

virtual int getTradingDay(void)1

virtual void notifyFinishInit(void)1

virtual bool hasFinishedInit(void)1

virtual int getExchangeCount(void)

virtual const YDExchange *getExchange(int pos)

virtual const YDExchange *getExchangeByID(const char *exchangeID)

1

2

3

YD Trading System C++ API Programming Guide

15 / 135

af://n337
af://n341
af://n351


The last method can be used for specifying and searching for a single exchange, and the invocation for searching each exchange is 
shown below:

All fields in the YDExchange structure are static data, and most of them are used to indicate whether a certain functionality is 
supported. Therefore, if you want to know the meaning and usage of a specific field in detail, please search for that field in this 
document to obtain a complete introduction related to that functionality.

3.2.3.2 Products  

YD provides two sets of methods for traversing and searching products.

The first two methods can be used for traversing all products of all exchanges, if multiple exchanges are configured on a YD OMS at 
this time. The specific methods are shown in the following code:

The last method can be used to specify and search for a product. The following shows an invocation example for searching for a 
product. If you want to know the expressions of all YD products, please use the above method to traverse and view 
"YDProduct.ProductID" one by one:

All fields in the YDProduct structure are static data, most of which are consistent with those of YDInstrument. They also include the 
attributes that should belong to an instrument, such as "Multiple", "Tick", "UnderlyingMultiple", "MaxMarketOrderVolume", 
"MinMarketOrderVolume", "MaxLimitOrderVolume" and "MinLimitOrderVolume". The original meaning of them is that when the 
corresponding fields on the instrument are not assigned, they can be used as their default values. However, at present, all 
instruments have their attribute values properly set, and there will be no null values. Therefore, the instrument attributes on 
"YDProduct" have little significance. For the meanings of the fields, please refer to the relevant content of  Instrument.

m_ PMarginProduct is used for calculating large-side margins and cross-product large-side margins. Please refer to Margin 
Deduction for details.

3.2.3.3 Instrument  

YD provides two sets of methods for traversing and searching for instruments.

The first two methods can be used for traversing all instruments. If multiple exchanges are configured on a YD OMS at this time, the 
instruments of all exchanges will be traversed. The specific methods are shown in the following code:

The last method can be used to specify and search for an instrument. The following shows an invocation example for searching for 
an instrument. If you want to know the expressions of all YD instruments, please use the above method to traverse and view 
"YDInstrument.InstrumentID" one by one:

"YDInstrument" is the core data structure of the YD system. Except for the "AutoSubscribed" and "UserSubscribed" fields, all other 
data are static. The following will introduce the meanings of key fields:

for(int i = 0; i < pApi->getExchangeCount(); i++) {

  YDExchange *exchange = pApi->getExchange(i);

}

1

2

3

pApi->getExchangeByID("CFFEX")  //CFFEX

pApi->getExchangeByID("SHFE")       //SHFE

pApi->getExchangeByID("INE")        //INE

pApi->getExchangeByID("DCE")        //DCE

pApi->getExchangeByID("GFEX")       //GFEX

pApi->getExchangeByID("CZCE")       //CZCE

pApi->getExchangeByID("SSE")        //SSE

pApi->getExchangeByID("SZSE")       //SZSE

1

2

3

4

5

6

7

8

virtual int getProductCount(void);

virtual const YDProduct *getProduct(int pos);

virtual const YDProduct *getProductByID(const char *productID);

1

2

3

for(int i = 0; i < pApi->getProductCount(); i++) {

  YDProduct *product = pApi->getProduct(i);

}

1

2

3

pApi->getProductByID("cu")

pApi->getProductByID("cu_o")

pApi->getProductByID("IC")

1

2

3

virtual int getInstrumentCount(void)

virtual const YDInstrument *getInstrument(int pos)

virtual const YDInstrument *getInstrumentByID(const char *instrumentID)

1

2

3

for(int i = 0; i < pApi->getInstrumentCount(); i++) {

  YDInstrument *instrument = pApi->getInstrument(i);

}

1

2

3

pApi->getInstrumentByID("cu2208")1

YD Trading System C++ API Programming Guide

16 / 135

af://n359
af://n368


Field Description

InstrumentID Instrument code, e.g.: cu2208, SP c2211&c2301

InstrumentHint
Hinted instrument information, applicable to the ETF options of SSE/SZSE, for example:
510050C2009M02350

ProductClass

Product class of instrument
YD_PC_Futures=1: futures
YD_PC_Options=2: Options
YD_PC_Combination=3: combination, e.g.: SP c2211&c2301. At present, arbitrage instruments
for DCE and CZCE are supported
YD_PC_Index=4: index, e.g.: CSI 300 index
YD_PC_Cash=5: cash, e.g.: CSI 300ETF

DeliveryYear Delivery year, e.g.: 2022

DeliveryMonth Delivery month, e.g.: "1" represents January, and "12" represents December.

ExpireDate Expiration date of instrument, e.g.: 20220808

ExpireTradingDayCount

The number of trading days (excluding weekends and holidays) between the current trading
day and the expiration date of the instrument. Since the calculation of the remaining days
depends on the trading calendar, for instruments that expire in the next year, the calculation
of the remaining days is only accurate after the exchange officially releases the trading
calendar for the next year at the end of the current year. Otherwise, the trading calendar
required for the remaining day calculation is estimated by YD, which may differ from the
remaining days calculated based on the official trading calendar.
If it is the last trading day, the value will be "0".

Multiple Instrument multiplier, the multiple relative to the underlying asset.

Tick Minimum price change.

MaxMarketOrderVolume Maximum volume of market orders.

MinMarketOrderVolume Minimum volume of market orders, the order volume must be a multiple of it.

MaxLimitOrderVolume Maximum volume of price-limited orders.

MinLimitOrderVolume Minimum volume of price-limited orders, the order volume must be a multiple of it.

OptionsType

Option type
YD_OT_NotOption=0: non-option
YD_OT_CallOption=1: call option
YD_OT_PutOption=2: put option

StrikePrice Strike price, valid only when the instrument aims to an option

m_pUnderlyingInstrument
The underlying instrument's pointer of an option instrument, which can be used to obtain the
relevant information about the underlying instrument. This is only valid when the instrument
aims to an option

UnderlyingMultiply
Underlying multiplier, the multiplier of the option relative to its underlying instrument, which
is only valid when the instrument aims to an option
It is always "1" for other non-option instruments

m_pMarketData
Pointer to the market data structure, which can be used to obtain market data. This market
data structure can be refreshed continuously with the change of the market data.

m_pLegInstrument[2]
Only applicable to combined instruments. m_pLegInstrument[0] points to the left leg
instrument of a combined instrument, m_pLegInstrument[1] points to the right leg instrument
of a combined instrument

LegDirction[2]
Only applicable to combined instruments. LegDirction[0] represents the trading direction of
the left leg instrument of a combined instrument, and LegDirction[1] represents the trading
direction of the right leg instrument of a combined instrument

m_pCombPositionDef[2]
[YD_MaxHedgeFlag]

Only applicable to combined instruments. m_pCombPositionDef[0] points to the combined
definition array of each hedge flag when buying a combined instrument,
m_pCombPositionDef[1] points to the combined definition array of each hedge flag when
selling a combined instrument. The hedge flags should be converted to array subscripts
through a reduction by "1".

Assume that the instrument multiplier of a futures is "5", which means that a per-lot futures instrument corresponds to 5 units of 
underlying assets. If the option of this per-lot futures instrument corresponds to two-lot of futures instrument, the 
"UnderlyingMultiply" of the option will be 2, and the instrument multiplier of this option will be , indicating that the 
option of the per-lot futures instrument corresponds to 10 units of underlying assets.

YD Trading System C++ API Programming Guide

17 / 135



Statement Description

YDInstrumentID
CombPositionID

Traditional combined position definition names, e.g.:
pg2302,-eg2303
c2207-C-2240,-c2207-C-2240
20008571,-20008572

int CombPositionRef Internal reference No. of traditional combined position definitions

int ExchangeRef Internal reference No. of exchanges

int Priority

Priority of traditional combined position definitions. The smaller the number, the higher the
priority.
It may be -1, indicating that the traditional combined positions of an exchange are not subject to
priority management, for example, CZCE

short CombHedgeFlag

Hedge flags of traditional combined position definitions, which can be of the following types:
YD_CHF_SpecSpec: speculation - speculation
YD_CHF_SpecHedge: speculation - hedge
YD_CHF_HedgeHedge: hedge - hedge
YD_CHF_HedgeSpec: hedge - speculation

short CombPositionType
Types of traditional combined position definitions. The types of traditional combined position
definitions of each exchange are shown in the following table.

double Parameter

Parameter, provided with different meanings in different exchanges.
At present, it is applicable only to option offset, buying option vertical spread and buying option
and futures combination in DCE and GFEX. It represents a combined margin discount. 0.2 means
the combined margin is 20% of the total of the original two-legged margins.

const YDExchange
*m_pExchange

Pointer of YDExchange.

const YDInstrument
*m_pInstrument[2]

Two-legged instrument of traditional combined position definition.
The order of the two legs may not be the same as the order of CombPositionID, and YD can
order them automatically depending on the business process.

int PositionDirection[2] Corresponding to the two-leg position direction of m_pInstrument

int HedgeFlag[2] Corresponding to the two-leg hedge flags of m_pInstrument

int PositionDate[2]
Corresponding to the two-leg position date of m_pInstrument. Currently, all positions are
historical positions.

Exchange Type of traditional combined positions Description

DCE YD_CPT_DCE_FuturesOffset=0 Futures offset

DCE YD_CPT_DCE_OptionsOffset=1 Options offset

DCE YD_CPT_DCE_FuturesCalendarSpread=2 Futures calendar spread

DCE YD_CPT_DCE_FuturesProductSpread=3 Futures cross-product spread

DCE YD_CPT_DCE_BuyOptionsVerticalSpread=4 Vertical spread of buy options

DCE YD_CPT_DCE_SellOptionsVerticalSpread=5 Vertical spread of sell options

3.2.3.4 Traditional combined position definition  

In the traditional margin model, the traditional combined position definition of DCE, GFEX, CZCE, SSE and SZSE can be queried 
through the following two APIs.

The first method aims to traverse all traditional combined position definitions. Firstly, obtain the count n of all traditional combined 
position definitions through the function "getCombPositionDefCount", and then traverse all traditional combined position 
definitions one by one from 0 to n-1 through the function "getCombPositionDef".

The second method aims to query a specific traditional combined position definition according to traditional combined position 
definition names and combined hedge flags. Traditional combined position definition names (combPositionID) are not completely 
consistent with those of exchanges. Please refer to the following text for the definitions of the traditional combined position 
definition names and combined hedge flags.

The information of "YDCombPositionDef" obtained through the above APIs is as follows:

The types of traditional combined positions for each exchange are shown in the following table.

// Traversing all traditional combined position definitions by SNs

virtual int getCombPositionDefCount(void);

virtual const YDCombPositionDef *getCombPositionDef(int pos);

1

2

3

// Querying a traditional combined position definition according to traditional combined position 

definition names and hedge flags

virtual const YDCombPositionDef *getCombPositionDefByID(const char *combPositionID,int combHedgeFlag);

1

2

YD Trading System C++ API Programming Guide

18 / 135

af://n444


Exchange Type of traditional combined positions Description

DCE YD_CPT_DCE_OptionsStraddle=7 Straddle put options

DCE YD_CPT_DCE_OptionsStrangle=8 Strangle Put options

DCE YD_CPT_DCE_BuyOptionsCovered=9 Buy option covered

DCE YD_CPT_DCE_SellOptionsCovered=10 Sell option covered

GFEX YD_CPT_GFEX_FuturesOffset=0 Futures offset

GFEX YD_CPT_GFEX_OptionsOffset=1 Options offset

GFEX YD_CPT_GFEX_FuturesCalendarSpread=2 Futures calendar spread

GFEX YD_CPT_GFEX_FuturesProductSpread=3 Futures cross-product spread

GFEX YD_CPT_GFEX_BuyOptionsVerticalSpread=4 Vertical spread of buy options

GFEX YD_CPT_GFEX_SellOptionsVerticalSpread=5 Vertical spread of sell options

GFEX YD_CPT_GFEX_OptionsStraddle=7 Straddle put options

GFEX YD_CPT_GFEX_OptionsStrangle=8 Strangle Put options

GFEX YD_CPT_GFEX_BuyOptionsCovered=9 Buy option covered

GFEX YD_CPT_GFEX_SellOptionsCovered=10 Sell option covered

CZCE YD_CPT_CZCE_Spread=50 Spread

CZCE YD_CPT_CZCE_StraddleStrangle=51 Short straddle or strangle

CZCE YD_CPT_CZCE_SellOptionConvered=52 Sell option covered

SSE, SZSE YD_CPT_StockOption_CNSJC=100 Bull call spread

SSE, SZSE YD_CPT_StockOption_CXSJC=101 Bear call spread

SSE, SZSE YD_CPT_StockOption_PNSJC=102 Bull put spread

SSE, SZSE YD_CPT_StockOption_PXSJC=103 Bear put spread

SSE, SZSE YD_CPT_StockOption_KS=104 Short straddle

SSE, SZSE YD_CPT_StockOption_KKS=105 Short strangle

Field Description

TradingDay Current trading day

PreSettlementPrice Pre-settlement price

PreClosePrice Pre-close price

PreOpenInterest Pre-position volume

UpperLimitPrice Upper limit price

LowerLimitPrice Lower limit price

Field Description

AccountID Fund account

PreBalance Pre-balance

3.2.3.5 Preday market data  

To obtain preday market data, the market data structure "YDMarketData" should be accessed through the "m_pMarketData" pointer 
of instruments.

Most of the information from "YDMarketData" is dynamic. Only those fields related to the previous trading day are static data. The 
static data part is shown in the following table:

3.2.3.6 Account  

For ordinary investors, the YD system only provides one way to obtain their account information, which can only be used by 
investors. Administrator users are not allowed to use this method.

The static data of YDAccount and YDExtendedAccount is shown in the following table:

// ydApi and ydExtendedApi can be called

virtual const YDAccount *getMyAccount(void)

// Only ydExtendedApi can be called

virtual const YDExtendedAccount *getExtendedAccount(const YDAccount *pAccount=NULL)

1

2

3

4

5

YD Trading System C++ API Programming Guide

19 / 135

af://n613
af://n638


Field Description

WarningLevel1 Risk warning level 1. Useless now, just ignore it

WarningLevel2 Risk warning level 2. Useless now, just ignore it

AccountFlag Account function switch

Switch value Description

YD_AF_SelectConnection
For determining whether the result of connection selection can be uploaded to the OMS for
all users' operation, refer to reporting the connection selection result for details.

YD_AF_AutoMakeCombPosition
Not Suggested. For determining whether it can be combined through a broker's ydAutoCP.
Refer to Auto tool for details.

YD_AF_BareProtocol
For determining whether to allow orders made based on a raw protocol, refer to Raw
Protocol for details.

YD_AF_DisableSelfTradeCheck
For determining whether to disable the self-trading check, refer to Self-Trading Check for
details.

YD_AF_NotifyOrderAccept
For determining whether to send the OMS notifications through the OMS, refer to Order
Notification for details.

YD_AF_OrderRefCheck
For determining whether to check the monotonic increase of OrderRef. Refer to Monotonic
Increase Check of Order Numbers for details.

Field Description

m_pAccount Position account

m_pInstrument Position instrument

PositionDirection Position direction

HedgeFlag Hedge flag

PrePosition Preday position

PreSettlementPrice Pre settlement price

AverageOpenPrice Average open price

AccountFlag is a bitmap where each binary position with 1 indicates the function is enabled and 0 indicates the function is disabled. 
Assuming the investor has enabled the functionality of the OMS Notification and Order Number Checking, then the decimal number 
of the AccountFlag will be 112, and the corresponding binary number will be 0b1110000.

The following code can be used to check whether the function of "YD_AF_NotifyOrderAccept" is enabled:

The list of functionalities that can be controlled at the account level is as follows:

3.2.3.7 Preday derivatives positions  

A derivative position is the position of futures and options. Since the basic operation of preday position is traversing, the real-time 
position can be calculated based on preday position, so YD only provides a method for traversing all preday positions.

The preday position structure of derivatives is as follows:

3.2.3.8 Preday holdings  

A holding is the position of stocks, funds and bonds on the SSE and SZSE. Since the basic operation of preday position is traversing, 
the real-time position can be calculated based on preday position, so YD only provides a method for traversing all preday positions.

The method for traversing all positions is as follows:

if (myAccount->AccountFlag & YD_AF_NotifyOrderAccept) {

  // server notification enabled

}

1

2

3

// Derivatives

virtual int getPrePositionCount(void)

virtual const YDPrePosition *getPrePosition(int pos)

The method for traversing all positions is as follows:

```c++

for(int i = 0; i < pApi->getPrePositionCount(); i++) {

  YDPrePosition *prePosition = pApi->getPrePosition(i);

}

1

2

3

4

5

6

7

8

9

10

virtual int getPreHoldingCount(void)

virtual const YDPreHolding *getPreHolding(int pos)

1

2

YD Trading System C++ API Programming Guide

20 / 135

af://n687
af://n716


Field Description

m_pAccount Position account

m_pInstrument Position instrument

PreHolding Preday holding

AverageOpenPrice Average open price

Field Description

m_pAccount Position account

m_pInstrument Position instrument

Position Preday position

ExchangeFrozenVolume Frozen volume of exchange

ExecAllocatedVolume
Net executed allocated volume - positive value means receipt of securities, negative value
means delivery of securities, only works on E+1 day

ExecAllocatedAmount
Net executed allocated amount - positive value means receiving money, negative value means
paying money, only works on E+1 day

ExecAllocatedFrozenVolume Net executed allocated frozen volume，only works on E+1 day

ExecAllocatedFrozenAmount Net executed allocated frozen amount，only works on E+1 day

Parameter Field Description

pAccount   Position account

pCombPositionDef   Traditional combined position definition

pCombPosition Position Position volume

  CombPositionDetailID
Traditional combined position details ID, which is only meaningful to SSE and
SZSE

The preday position structure of holdings is as follows:

3.2.3.9 Preday spots positions  

A spot position is the spot position of the underlying of the stock option. Since the basic operation of preday position is traversing, 
the real-time position can be calculated based on preday position, so YD only provides a method for traversing all preday positions.

The method for traversing all positions is as follows:

The preday position structure of spots is as follows:

3.2.3.10 Traditional combined preday position  

In the traditional margin model, traditional combined preday position data is static. Theoretically, it should also be transmitted 
during static data transmission, namely, before the function "notifyFinishInit" operation. However, in order to achieve the 
compatibility with the old version of API, it is always transmitted to the client immediately after the function "notifyFinishInit" and 
before the functon "notifyCaughtUp" operations. Although the transmission time is different from that for other static data, 
traditional combined preday positions, just like other static data, can only be pushed once at the first login. That is to say, if there is 
a "notifyFinishInit" callback, it can be pushed to the client, however, it will not be pushed repeatedly even due to disconnection and 
other reasons. The traditional combined preday positions can be introduced together with other static data for the sake of proper 
concept and easy understanding.

For an API, no any query interface has been provided, so it can only collect all traditional combined preday positions relying on the 
"notifyCombPosition" callback function.

All fields of the "YDCombPosition" structure are static data, which should be used together with other parameters involved in the 
callback:

for(int i = 0; i < pApi->getPreHoldingCount(); i++) {

  YDPreHolding *prePosition = pApi->getPreHolding(i);

}

1

2

3

virtual int getSpotPrePositionCount(void)

virtual const YDSpotPrePosition *getSpotPrePosition(int pos)

1

2

for(int i = 0; i < pApi->getSpotPrePositionCount(); i++) {

  YDSpotPrePosition *prePosition = pApi->getSpotPrePosition(i);

}

1

2

3

virtual void notifyCombPosition(const YDCombPosition *pCombPosition,const YDCombPositionDef 

*pCombPositionDef,const YDAccount *pAccount)

1

YD Trading System C++ API Programming Guide

21 / 135

af://n738
af://n773


Field Description

Name Parameter name

Target Applicable targets of parameters

Value Parameter value

Name Target Value

MarginLowerBoundaryCoef MarginCalcMethod1
The boundary coefficient in the stock index option margin
algorithm, the floating point number, default: 0.5

MarginBasePrice Futures or Options

The base prices used for calculating the margin of futures or
short positions of option can be selected as follows:
0: Pre settlement price
1: Opening price
2: Latest price
3: Average market price
4: The higher value between the latest price and pre settlement
price
According to the current common rules, the base prices used
for futures and options shall be 1 and 4, respectively

OrderMarginBasePrice Futures or Options

The base prices used for calculating the frozen margin of open
position orders for futures or put options can be selected as
follows:
0: Pre settlement price
5: Order price (for market orders, use the upper limit price)
7: Use the MarginBasePrice price
According to the current common rules, the base prices used
for futures and options shall be 5 and 0, respectively
Note that the frozen margin in the application for option
execution is always calculated based on the pre settlement
price

MarginBasePriceAsUnderlying Options

The underlying product prices used for calculating the put
option margin can be selected as follows:
0: Pre settlement price
2: Latest price
4: The higher value between the latest price and pre settlement
price
According to the current common rules, the underlying product
price used shall be 0

3.2.3.11 System parameter  

System parameters are those used in the calculation process. Currently, they are only used for margin calculation.

YD provides two methods for traversing and searching for data.

The first two methods can be used for traversing all system parameters. The specific method is shown in the following code:

The third method can be used for specifying and searching for system parameters. The following shows an example for call 
searching:

The YDSystemParam data is static, and its structure is as follows:

The above Name and Target are strings. Possible combinations are shown in the following table:

virtual int getSystemParamCount(void)

virtual const YDSystemParam *getSystemParam(int pos)

virtual const YDSystemParam *getSystemParamByName(const char *name,const char *target)

1

2

3

for(int i = 0; i < pApi->getSystemParamCount(); i++) {

  YDSystemParam *param = pApi->getSystemParam(i);

}

1

2

3

getSystemParamByName("MarginBasePrice", "Futures")1

YD Trading System C++ API Programming Guide

22 / 135

af://n799


Name Target Value

SellOrderPremiumBasePrice Options

The base prices used for calculating the reversely frozen
premium when selling open position options can be selected as
follows:
0: Pre settlement price
5: Order price (for market orders, use the lower limit price)
6: Non-reverse freezing
According to the current common rules, the base prices used
shall be 6
Note that the premium frozen when buying open position
options is always the order price (for market orders, use the
upper limit price)

PortfolioMarginConcession DCELongOptionPortfolio

For the traditional combined positions with long option
positions included in DCE and GFEX, the following values can be
selected to determine whether to reduce the calculated margin:
0: Without reduction
1: With reduction. Since YD does not check the funds when
closing positions, in extreme cases, it may lead to overdraft of
funds due to overcharge of margin when closing positions after
buying option combinations.

UseCollateral Account

When the collateral funds obtained from collaterals are
included in the pre equity for open position, the following
values can be selected:
0: Disable
1: Enable

MarketMaker System
Does the OMS support market maker quote or not
yes: Yes
no: No

Test System
Is the OMS a test system? A test system does not involve
performance optimization and cannot be used for production

ServerVersion System
Version number of the OMS. Refer to Version Rules for the
detailed version number specification

ConnectionMode System

Connection modes of the OMS:
0: All management seat
1: First mangement others non-management seat
2: All non-management seat
3: Management seats used as non-management seats, can only
be used in SHFE and CFFEX

MinApiVersion System
Minimum API version number supported by the OMS. Refer to
Version Rules for the detailed version number specification

MaxApiVersion System
Maximum API version number supported by the OMS. Refer to
Version Rules for the detailed version number specification

MinSelectConnectionGap System
Minimum time gap for reporting the connection selection
result, in milliseconds

MaxSelectConnectionGap System
Maximum effective time for reporting the connection selection
result, in milliseconds

MissingOrderGap System
Timeout of an unknown order determined by the system, in
milliseconds.

UDPTradingPort System
UDP trading port, which will be 0 when the UDP service is
disabled on the OMS.

XTCPTradingPort System
XTCP trading port, which will be 0 when the XTCP service is
disabled on the OMS.

TradingSegmentDetail System
Is the detailed trading segment announcement enabled?
yes: Yes
no: No

ClientMinPasswordLen System
Investor's minimum password length
0 indicates no minimum length limit.

ClientMinPasswordCharSet System
Investor's password character set count
0 indicates no character set count limit

AdminMinPasswordLen System
Administrator's minimum password length
0 indicates no minimum length limit

AdminMinPasswordCharSet System
Administrator's password character set count
0 indicates no character set count limit

YD Trading System C++ API Programming Guide

23 / 135



Field Description

SubProductClass

YD_SPC_Other=0：Other
YD_SPC_Stock=1：Stock
YD_SPC_Bond=2：Bond
YD_SPC_Fund=3：Fund

YDOrderFlag
YD_YOF_Normal=0：Normal trading
YD_YOF_Designation=11：SZSE transfer of custody

Direction
YD_D_Buy=0：Buy
YD_D_Sell=1：Sell

RatePiece[YD_CCT_Count]

Cash commission rate item array, each array element is a type of fee
YDCashCommissionRatePiece.
YD_CCT_StampDuty：Stamp duty
YD_CCT_SecuritiesManagementFee：Securities management fee
YD_CCT_HandlingFee：Handling fee
YD_CCT_TransferFee：Transfer fee

m_pInstrument the pointer to the instrument

m_pProduct the pointer to the product

m_pExchange the pointer to the exchange

m_pAccount the pointer to the account

Field Description

RateByAmount Rate based on amount

RateByVolume Rate based on volume

MaxValue Maximum value

MinValue Minimum value

3.2.3.12 Cash Commission Rate  

The setting values of the cash commission rate are sparse. For example, to set the cash commission rate for all investors at the 
product level, only one record needs to be set at the product level. The YD OMS will apply this setting value to all contracts 
belonging to this product for all investors. These setting values are mainly used to display in the GUI and have no practical 
meaning for investors.
Here is the method for obtaining the cash commission rate, for reference only, without detailed explanation.

Investors can use getInstrumentCashCommissionRate to get the cash commission rate of the instrument in corresponding hedge 
flag. It is not recommended to get it directly from Account Level Information's YDAccountInstrumentInfo.

The field descriptions for the returned cash commission rate YDCashCommissionRate are shown below:

Note

m_pInstrument, m_pProduct, m_pExchange, and m_pAccount point to the level of the current rate structure setting. These 
fields in the rate structure of a specific contract are usually irrelevant to the instrument, so investors usually do not need to pay 
attention to the values ​​of these fields. For example, a rate setting on the SSE (m_pExchange points to the SSE) will be applied to 
all securities of the SSE. All SSE securities point to the same structure, and the m_pExchange of these structures are all SSE 
pointers, which have nothing to do with these instruments.

The structure of YDCashCommissionRatePiece is as follows:：

3.2.3.13 Brokerage Fee Rate  

The setting values of the brokerage fee rate are sparse. For example, to set the brokerage fee rate for all investors at the 
product level, only one record needs to be set at the product level. The YD OMS will apply this setting value to all contracts 
belonging to this product for all investors. These setting values are mainly used for display in the GUI and have no practical 
meaning for investors.

Here is the method for obtaining the brokerage fee rate, for reference only, without detailed explanation.

Investors can use getInstrumentBrokerageFeeRate to get the brokerage fee rate of the instrument in corresponding hedge flag. It is 
not recommended to read it directly from Account Level Information's YDAccountInstrumentInfo.

// Cash Commission Rate

virtual int getCashCommissionRateCount(void)

virtual const YDCashCommissionRate *getCashCommissionRate(int pos)

1

2

3

virtual const YDCashCommissionRate *getInstrumentCashCommissionRate(const YDInstrument *pInstrument,int 

ydOrderFlag,int direction,const YDAccount *pAccount=NULL)

1

// Brokerage Fee Rate

virtual int getBrokerageFeeRateCount(void)

virtual const YDBrokerageFeeRate *getBrokerageFeeRate(int pos)

1

2

3

YD Trading System C++ API Programming Guide

24 / 135

af://n919
af://n974


Field Description

SubProductClass

YD_SPC_Other=0：Other
YD_SPC_Stock=1：Stock
YD_SPC_Bond=2：Bond
YD_SPC_Fund=3：Fund

YDOrderFlag
YD_YOF_Normal=0：Normal trading
YD_YOF_Designation=11：SZSE transfer of custody

Direction
YD_D_Buy=0：Buy
YD_D_Sell=1：Sell

RatePiece Brokerage fee detailed parameters，YDCashCommissionRatePiece please refer toCash Commission Rate

m_pInstrument pointer to the instrument

m_pProduct pointer to the product

m_pExchange pointer to the exchange

m_pAccount pointer to the account

Parameter Field Description

YDCommissionRate OpenRatioByMoney open ratio by money

  OpenRatioByVolume open ratio by volume

  CloseRatioByMoney close ratio by money

  CloseRatioByVolume close ratio by volume

  CloseTodayRatioByMoney close today ratio by money

  CloseTodayRatioByVolume close today ratio by volume

  OrderCommByVolume commission per order

  OrderActionCommByVolume cancellation commission per order

  ExecRatioByMoney exercise ratio by money

  ExecRatioByVolume exercise ratio by volume

The field descriptions for the returned brokerage fee rate YDBrokerageFeeRate are shown below：

Note

m_pInstrument, m_pProduct, m_pExchange, and m_pAccount point to the level of the current rate structure setting. These 
fields in the rate structure of a specific contract are usually irrelevant to the contract, so investors usually do not need to pay 
attention to the values ​​of these fields. For example, a rate set on the SSE (m_pExchange points to the SSE) will be applied to all 
securities on the SSE. All SSE securities point to the same structure, and the m_pExchange of these structures are all SSE 
pointers, which have nothing to do with these contracts.

3.2.3.14 Commission Rate  

The setting values of the commission rate are sparse. For example, to set the commission rate for all investors at the product 
level, only one record needs to be set at the product level. The YD OMS will apply this setting value to all contracts belonging to 
this product for all investors. These setting values are mainly used for display in the GUI and have no practical meaning for 
investors.
Here is the method for obtaining the commission rate, for reference only, without detailed explanation.

Investors can use getInstrumentBrokerageFeeRate to get the commission rate of the instrument in corresponding hedge flag. It is 
not recommended to get it directly from Account Level Information's YDAccountInstrumentInfo.

The field descriptions for the returned commission rate are shown below：

3.2.3.15 Message count commission rate  

The message count commission rate encompasses the standards for commission charged by various exchanges. Given that certain 
products from some exchanges have not initiated the levying of the message count commission, the method described below will 
exclusively retrieve parameter information related to the products for which message count commission have been imposed:

virtual const YDBrokerageFeeRate *getInstrumentBrokerageFeeRate(const YDInstrument *pInstrument,int 

ydOrderFlag,int direction,const YDAccount *pAccount=NULL)

1

// Commission Rate

virtual int getCommissionRateCount(void)

virtual const YDCommissionRate *getCommissionRate(int pos)

1

2

3

virtual const YDCommissionRate *getInstrumentCommissionRate(const YDInstrument *pInstrument,int 

hedgeFlag,const YDAccount *pAccount=NULL)

1

YD Trading System C++ API Programming Guide

25 / 135

af://n1014
af://n1066


Field Description

ProductRef Product reference

MessageCount Message count level

OTR OTR level

CommissionRate message count commission rate

 

0 yuan/count 0 yuan/count

0.25 yuan/count 0.5 yuan/count

1.25 yuan/count 2.5 yuan/count

25 yuan/count 50 yuan/count

ProductRef OTR MessageCount CommissionRate

8 0 0 0

8 0 4000 0.25

8 0 8000 1.25

8 0 40000 25

8 2 0 0

8 2 4000 0.5

8 2 8000 2.5

8 2 40000 50

The field information for YDMessageCommissionRate is as follows:

The Order-to-Trade Ratio (OTR) and message count disclosed by exchanges are interval values, whereas YD provides level 
parameters. The correspondence between the two is depicted in the following two tables.

The following is the copper futures (cu) message count commission rate announced by SHFE in 2022:

The following are the corresponding settings for YD, assuming that the ProductRef for copper futures (cu) is 8:

Let's presume that a certain investor has an message count of 9000 on a cu contract, with a corresponding OTR of 3. Therefore, the 
message count commission calculated using the segment accumulation method would be:

First segment: 4000 total, commission of 0 yuan

Second segment: 4000 total, commission of 4000*0.5 = 2000 yuan

Third segment: 4000 total, commission of 1000*2.5 = 2500 yuan

The total message count commission amounts to 4500 yuan.

3.2.3.16 Margin rate  

The setting values of the margin rate are sparse. For example, to set the margin rate for all investors at the product level, only 
one record needs to be set at the product level. The YD OMS will apply this setting value to all instruments belonging to this 
product for all investors. These setting values are mainly used to display in the GUI and have no practical meaning for 
investors.
Here is the method for obtaining the margin rate, for reference only, without detailed explanation.

Investors can use getInstrumentMarginRate to get the margin rate of the instrument in corresponding hedge flag. It is not 
recommended to get it directly from Account Level Information's YDAccountInstrumentInfo.

The YDMarginRate structure has a large number of "union" fields for adapting to different margin models. For the sake of easy 
understanding, margin rate parameters under three different margin models are listed below.

The following fields are apply to futures margins of futures exchanges.

// message count commission rate

virtual int getMessageCommissionRateCount(void)

virtual const YDMessageCommissionRate *getMessageCommissionRate(int pos)

1

2

3

// Margin rate

virtual int getMarginRateCount(void)

virtual const YDMarginRate *getMarginRate(int pos)

1

2

3

virtual const YDMarginRate *getInstrumentMarginRate(const YDInstrument *pInstrument,int hedgeFlag,const 

YDAccount *pAccount=NULL)

1

YD Trading System C++ API Programming Guide

26 / 135

af://n1166


Field Description

m_pAccount Pointer of investors corresponding to margin rate

m_pProduct Pointer of the product corresponding to margin rate

m_pInstrument Pointer of instrument corresponding to margin rate

HedgeFlag

YD_HF_Speculation=1: Speculation
YD_HF_Arbitrage=2: Arbitrage, only supported by CFFEX. In order to facilitate the coding, YD
provides a parameterized representation to determine whether to support arbitrage trading
and positions. When the value of "YDExchange.UseArbitragePosition" is "True", it means that
the exchange supports arbitrage trading and positions, otherwise it does not support.
YD_HF_Hedge=3: hedge

LongMarginRatioByMoney Long margin rate based on amount

LongMarginRatioByVolume Long margin rate based on volume

ShortMarginRatioByMoney Short margin rate based on amount

ShortMarginRatioByVolume Short margin rate based on volume

Field Description

m_pAccount Pointer of investors corresponding to margin rate

m_pProduct Pointer of the product corresponding to margin rate

m_pInstrument Pointer of instrument corresponding to margin rate

HedgeFlag

YD_HF_Speculation=1: Speculation
YD_HF_Arbitrage=2: Arbitrage, only supported by CFFEX. In order to facilitate the coding, YD
provides a parameterized representation to determine whether to support arbitrage trading and
positions. When the value of YDExchange.UseArbitragePosition is "True", it means that the
exchange supports arbitrage trading and positions, otherwise it does not support.
YD_HF_Hedge=3: hedge

CallMarginRatioByMoney Short margin rate of call option based on amount

CallMarginRatioByVolume Short margin rate of call option based on volume

PutMarginRatioByMoney Short margin rate of put option based on amount

PutMarginRatioByVolume Short margin rate of put option based on volume

Field Description

m_pAccount Pointer of investors corresponding to margin rate

m_pProduct Pointer of the product corresponding to margin rate

m_pInstrument Pointer of instrument corresponding to margin rate

HedgeFlag
YD_HF_Normal=1: Normal
YD_HF_Covered=3: Covered

BaseMarginRate Margin rate of base instrument

LinearFactor Linear factor

LowerBoundaryCoef Minimum boundary coefficient

Field Description

AccountRef Accont reference No.

The following fields are apply to the commodity option margins of futures exchanges and the stock index option margin of CFFEX.

The following fields are apply to the stock option margins of SSE and SZSE.

3.2.3.17 Margin adjustment during trading  

Generally, the margin rate is fixed during trading, however, in some cases brokers may adjust the margin for some customers 
during trading. When a broker updates the margin rate, investors will receive the following callbacks:

When the margin rate changes, it is unnecessary for investors using ydExtendedApi to worry about which instruments have changed 
and which position margins need to be updated. ydExtendedApi can properly manage the relevant change of the margin rate, 
however investors using ydApi should independently update the corresponding instrument position margins with the change of the 
margin rate. The following table shows the instrument filter fields of updated margin rate "YDUpdateMarginRate" affecting the 
margin rate. The margin rate related fields are not listed. See the margin rate descriptions corresponding to each margin model 
mentioned above for details if necessary.

virtual void notifyUpdateMarginRate(const YDUpdateMarginRate *pUpdateMarginRate)1

YD Trading System C++ API Programming Guide

27 / 135

af://n1257


Field Description

ProductRef Product reference No.

InstrumentRef Instrument reference No.

HedgeFlagSet Hedge flag set. If a hedge flag is affected, the bit corresponding to "1<<HedgeFlag will be set"

OptionTypeSet
Option type set. If an option type is affected, the bit corresponding to "1<<OptionsType will be
set"

ExpireDate Instrument expiry date, mainly used for representing the option series

UnderlyingInstrumentRef Underlying instrument reference No

Multiple
Instrument multiplier, the margin rate of stock options may be adjusted due to the affection of
dividend

The following shows the example code for determining whether the change of the received margin rate will affect the positions 
(instrument and hedge flag):

It is suggested that users of ydApi traverse positions to refresh the margin of each position. The pseudo-code is as follows:：

3.2.3.18 Account level information  

The account level information provides exchange-level, product-level and instrument-level margin rates, commission rates, rights 
and traditional risk control parameters, which is a structure for investors to obtain these parameters. The following shows the 
description of these types of information:

Commission rates are static information, while margins are dynamic data, which can be adjusted during trading. Therefore, the 
preday margins, commission rates and margin rates obtained through notifyFinishInit are instrument level information. For the 
sake of easy operation, API provides a method to directly obtain the instrument level margin rates and commission rates. Refer 
to Margin Model and Commission for details;

bool applyToInstrument(const CYDUpdateMarginRate *pUpdateMarginRate,const YDInstrument *pInstrument, int 

hedgeFlag) const

{

    if ((pUpdateMarginRate->ProductRef>=0) && (pInstrument->ProductRef!=pUpdateMarginRate->ProductRef))

    {

        return false;

    }

    if ((pUpdateMarginRate->InstrumentRef>=0) && (pInstrument->InstrumentRef!=pUpdateMarginRate-

>InstrumentRef))

    {

        return false;

    }

    if ((pUpdateMarginRate->UnderlyingInstrumentRef>=0) && (pInstrument-

>UnderlyingInstrumentRef!=pUpdateMarginRate->UnderlyingInstrumentRef))

    {

        return false;

    }

    if ((pUpdateMarginRate->ExpireDate>0) && (pInstrument->ExpireDate!=pUpdateMarginRate->ExpireDate))

    {

        return false;

    }

    if ((pUpdateMarginRate->Multiple>0) && (pInstrument->Multiple!=pUpdateMarginRate->Multiple))

    {

        return false;

    }

    if ((pUpdateMarginRate->OptionTypeSet>0) && (((1<<pInstrument->OptionsType)&pUpdateMarginRate-

>OptionTypeSet)==0))

    {

        return false;

    }

  if ((pUpdateMarginRate->HedgeFlagSet>0) && (((1<<hedgeFlag)&pUpdateMarginRate->HedgeFlagSet)==0))

  {

    return false;

  }

    return true;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

virtual void notifyUpdateMarginRate(const YDUpdateMarginRate *pUpdateMarginRate)

{

  for(auto pPosition : AllPositions)

  {

    if (applyToInstrument(pUpdateMarginRate, pPosition->pInstrument, pPosition->hedgeFlag))

    {

      // Using the investor's own margin refresh method

      userDefinedUpdateMargin(pPosition, pUpdateMarginRate);

    }

  } 

}

1

2

3

4

5

6

7

8

9

10

11

YD Trading System C++ API Programming Guide

28 / 135

af://n1293


Field Description

m_pAccount Account structure pointer

m_pExchange Exchange structure pointer

TradingRight Trading right, dynamic data

IsDedicatedConnectionID Dedicated seat array bitmap, refer to Designated Seat for details

TradingCode[YD_MaxHedgeFlag] Array of trading codes，trading codes under different hedge flag can be obtained.

Field Description

m_pAccount Account structure pointer

m_pExchange Exchange structure pointer

TradingRight Trading right, dynamic data

TradingConstraints[YD_MaxHedgeFlag]
Traditional risk control parameter array for speculation, hedge and spread,
indicating that the risk control indicators of all instruments regarding the product
are added and then controlled. Refer to Risk Control Parameters for details

Field Description

m_pAccount Account structure pointer

m_pExchange Exchange structure pointer

TradingRight Trading right, dynamic data

TradingConstraints[YD_MaxHedgeFlag]
Traditional risk control parameter array for speculation, hedge and spread,
indicating that only the thresholds of the risk control indicators regarding an
instrument is limited. Refer to Risk Control Parameters for details

m_pMarginRate[YD_MaxHedgeFlag] Margin rate array, refer to Margin for details

m_pCommissionRate[YD_MaxHedgeFlag] Commission rate array, refer to Commission for details

RFQCount
RFQ order count, only includes RFQ Order of options for Shanghai Futures
Exchange and China Energy Exchange.

m_pCashCommissionRate[2]
Cash Commission Rate，m_pCashCommissionRate[0] is buy cash commission
rate，m_pCashCommissionRate[1]is sell cash commission rate

m_pBrokerageFeeRate[2]
Brokerage fee rate，m_pBrokerageFeeRate[0]is buy brokerage fee rate，
m_pBrokerageFeeRate[1]is sell brokerage fee rate.

ExemptMessageCommissionYDOrderFlag
If the YDOrderFlag of the order is greater than this flag, the information
declaration fee will not be calculated.

MaxMessage
The maximum information limit is the upper limit, and exceeding this limit will
prohibit order placement on this instrument.

Rights are dynamic data, which can be adjusted during trading. Margin parameters are set at all levels, however, they must be 
used at the instrument level. The API does not directly provide a method to query instrument level rights, which can be used 
automatically according to the method mentioned in Trading Right;

Traditional risk control parameters are static. The risk control parameters of YD can be set at the product and instrument 
levels. For example, the cancellation volume set at the product level means that the total all instrument-based cancellation 
volume involving the product is limited. Therefore, the risk control parameters should be obtained from the product and 
instrument levels, respectively. Refer to Risk Control Parameters for details.

The information at all levels regarding an account can be obtained directly through the following functions:

The main fields of YDAccountExchangeInfo are as follows, and their primary keys are accounts and exchanges:

The main fields of "YDAccountProductInfo" are as follows, and their primary keys are accounts and products:

The main fields of "YDAccountInstrumentInfo" are as follows, and their primary keys are accounts and instruments:

Investors who use YDExtendedApi can also obtain more detailed account information through the following methods. The input 
parameters of these methods are the pointers to the various levels obtained above.

/// when trader call following 3 functions, pAccount should be NULL

virtual const YDAccountExchangeInfo *getAccountExchangeInfo(const YDExchange *pExchange,const YDAccount 

*pAccount=NULL)

virtual const YDAccountProductInfo *getAccountProductInfo(const YDProduct *pProduct,const YDAccount 

*pAccount=NULL)

virtual const YDAccountInstrumentInfo *getAccountInstrumentInfo(const YDInstrument *pInstrument,const 

YDAccount *pAccount=NULL)

1

2

3

4

YD Trading System C++ API Programming Guide

29 / 135



Field Description

OptionLongPositionCost Buy amount (total cost of long option position)

OptionLongPositionCostLimit Buy amount limit(total cost limit for long option positions)

TradeControlFlag Spot trading investor's control flag

Field Description

MarginModelID Margin Mode ID

Field Description

MessageCommission Current message commission

CashTradingConstraint
Bitmap of cash trading constraint：
0：prohibit buying
1：prohibit selling

MaxCashBuyVolume Maximum cash buy volume

MaxOrderVolume Maximum order volume

HoldingLimit Holding limit

Field Description

MarginModelID Margin Model ID

ParamName Parameter Name

ParamValue Parameter Value

MarginModelID ParamName ParamValue

1 MA.intraRateY 0.7

1 MA.fut.cvf 10

1 MA.fut.MA211.price 2603

1 MA.fut.MA211.marginRate 0.2

1 MA.fut.MA211.timeRange SPOT

1 MA.fut.MA211.lockRateX 0.2

1 MA.fut.MA211.addOnRate 0

Compared with YDAccountExchangeInfo, the additional information provided by YDExtendedAccountExchangeInfo is as follows:

Compared with YDAccountProductInfo, the additional information provided by YDExtendedAccountProductInfo is as follows:

Compared with YDAccountInstrumentInfo, the additional information provided by YDExtendedAccountInstrumentInfo is as follows:

3.2.3.19 Combination margin parameters  

In the portfolio margin model, the combination margin parameters are derived from exchange's preday data and cannot be 
modified during trading hours. To accommodate combination margin parameters from all exchanges, YD adopts a universal 
expression format using key-value pairs, where the meaning of each key-value pair is parsed by respective combination margin 
models. For more information about the portfolio margin model, please refer to Portfolio Margin Model.

YD provides the following method to traverse all margin models:

The structure of YDMarginModelParam is as follows:

Taking the CZCE SPBM parameters as an example, the returned margin parameters are shown in the table below. The margin 
model ID for CZCE SPBM is 1.

The above data is equivalent to the information in the original file issued by CZCE, as shown below:

virtual const YDExtendedAccountExchangeInfo *getExtendedAccountExchangeInfo(const YDAccountExchangeInfo 

*pAccountExchangeInfo)

virtual const YDExtendedAccountProductInfo *getExtendedAccountProductInfo(const YDAccountProductInfo 

*pAccountProductInfo)

virtual const YDExtendedAccountInstrumentInfo *getExtendedAccountInstrumentInfo(const 

YDAccountInstrumentInfo *pAccountInstrumentInfo)

1

2

3

virtual int getMarginModelParamCount(void);

virtual const YDMarginModelParam *getMarginModelParam(int pos);

1

2

<?xml version="1.0" encoding="utf-8"?>1

YD Trading System C++ API Programming Guide

30 / 135

af://n1423


Field Description

AccountRef Account number. obtained from YDAccount.

MarginModelID Margin Model ID

CloseVerify Whether to check usable funds when closing positions.

MarginRatio Margin Ratio

ProductRange
Applicable product range. Separated by spaces, it represents the subset of products that are applicable to
the corresponding portfolio margin model.
An empty value indicates no restriction on the product range, consistent with the portfolio margin model.

Field Description

OpenLimit Open volume limit

DirectionOpenLimit[2] Buy/sell open volume limit

PositionLimit Position limit

3.2.3.20 Account combination margin parameters  

In the portfolio margin model, you can obtain the parameters of an investor on a specific margin model using the following method.

The fields of the YDAccountMarginModelInfo structure are as follows:

If there are changes in 'CloseVerify' or 'MarginRatio' during trading hours, investors will be notified through the following callback 
function. Please note that 'ProductRange' cannot be modified during trading hours.

For more information about the portfolio margin model, please refer to Portfolio Margin Model。

3.2.3.21 Risk control parameters  

For the YD system, two types of risk control parameters can be provided according to technical implementation, which are 
traditional risk control parameters and general risk control parameters.

Traditional risk control parameters are subject to the risk control rules supported by YD in the early stage, which mainly involve 
the control of common open position volume, trade volume, position volume and cancellation counts. Traditional risk control 
parameters do not increase continuously. Parameters subject to the new risk control rules are all set in the General Risk 
Control Parameters;

General risk control parameters are introduced to adapt to the increasingly flexible and complex risk control rules. Their 
setting structure aims to general settings, which should be interpreted according to each risk control rule. Unlike those final 
values mentioned in Account Level Information, general risk control parameters do not merge with those risk control 
parameters set at different dimensions, and therefore investors should merge them according to the levels supported by each 
risk control rule.

The fields of the traditional risk control parameter structure are shown in the following table. Combined with the 
"TradingConstraints[YD_MaxHedgeFlag]" of "YDAccountProductInfo" and "YDAccountInstrumentInfo", complete risk control 
parameters under different hedge flags can be obtained. Refer to the specific risk control rules mentioned in Risk Control for the 
detailed calculation method based on the risk control rules.

<spbmFile>

    <version>1.00</version>

    <exchange>ZCE</exchange>

    <exchangeName>China Zhengzhou Commodity Exchange</exchangeName>

    <createdDate>20221101</createdDate>

    <createdTime>150229</createdTime>

    <productFamily>

        <productFamilyCode>MA</productFamilyCode>

        <intraRateY>70.00</intraRateY>

        <futPf>

            <pfCode>MA</pfCode>

            <pfName>Methanol futures</pfName>

            <cvf>10</cvf>

            <fut>

                <month>202211</month>

                <futCode>MA211</futCode>

                <price>2603.00</price>

                <marginRate>20.00</marginRate>

                <timeRange>SPOT</timeRange>

                <lockRateX>20.00</lockRateX>

                <addOnRate>0.00</addOnRate>

            </fut>

        </futPf>

    </productFamily>

</spbmFile>

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

virtual const YDAccountMarginModelInfo *getAccountMarginModelInfo(int marginModelID,const YDAccount 

*pAccount=NULL)

1

virtual void notifyAccountMarginModelInfo(const YDAccountMarginModelInfo *pAccountMarginModelInfo)1

YD Trading System C++ API Programming Guide

31 / 135

af://n1477
af://n1504


Field Description

DirectionPositionLimit[2] Long/short position limit

TradeVolumeLimit Trade volume limit

CancelLimit Order cancellation limit

Field Description

GeneralRiskParamType Type of risk control rules

AccountRef Account reference No., -1 means effective for all users, and other values mean effective for this user

ExtendedRef
Extended reference No., which can represent the serial numbers of exchanges, products and
instruments according to the rule definition

IntValue1 Integer value 1

IntValue2 Integer value 2

FloatValue Floating-point value

Parameters based on general risk control rules can be obtained through the following traversing method:

The sample code for traversing all parameters based general risk control rules is as follows:

The general risk control parameters from "YDGeneralRiskParam" are static data, their structure is as follows. The primary keys are 
(GeneralRiskParamType, AccountRef, ExtendedRef):

Not all the risk control rules involve all the above "IntValue1", "IntValue2" and "FloatValue". Most of the risk control rules only involve 
some of the parameters regarding the above rules. Refer to the specific risk control rules for details. Those parameter values not 
listed in the risk control rules mean that they are not used.

3.2.4 Receive dynamic data  

After the YD OMS has completed the transmission of static data, the OMS port is ready to receive orders. If order submission starts 
at this time, the OMS will normally push dynamic data such as notifications. However, if the dynamic data is not sent completely to 
the client during an offline period of the client through the OMS, which means that the client's trading basis at this time may be 
wrong. In order to notify investors that all historical dynamic data have been received and a normal trading can be started, YD 
added this stage and notified investors through the callback function "notifyCaughtUp".

The basic principle is that the OMS can show the investor the maximum SN when logging in. The API can be used to compare the SN 
of the current dynamic data with the maximum trading flow SN when logging in. If the current trading flow SN exceeds the 
maximum one when logging in, then the catching-up of the trading flow can be considered as completed. The callback of this 
method only indicates that it has caught up with the flow generated when logging in. In fact, there may be a trading flow generated 
after logging in. This message can be obtained again after disconnection and then reconnection, refer to Trading Reconnection for 
details.

The dynamic data collected during this stage is the same as that collected during normal trading, so the callback functions for 
collecting dynamic data will not be enumerated here. Refer to the description of callback functions in the corresponding operations.

3.3 Reconnection  

3.3.1 Trading reconnection  

When detecting that the TCP trading connection with the OMS is interrupted or timed out, the API will call back "notifyEvent"
(YD_AE_TCPTradeDisconnected) to notify the trading thread that it has disconnected from the OMS. Then the API will go on to 
initiate the connection to the OMS until the reconnection is made, and the API will call back a "notifyEvent"
(YD_AE_TCPTradeConnected) notification. The subsequent process is similar to that for Start except the following differences:

The static data will not be retransmitted during reconnection, because no "notifyFinishInit" callback will be made. After logging 
in, the orders and trading flow generated during disconnection will be transmitted;

During logging in, it is not allowed to use another username. During calling login, the API can be used to determine whether to 
go to the next step or terminate the API depending on different factors. Refer to the following for the specific logic;

Check the data fingerprint of the OMS for being changed. If changed, enter the termination logic operation (ConditionB) 
directly. The data fingerprint of the OMS is calculated overall based on the preday data and the configuration information 
of YD. Uploading incorrect preday data, uploading new trading day data and restarting the OMS, and changing technical 
parameters such as exchange or seat configured in the OMS and restarting the OMS are common reasons for the data 
fingerprint change of the OMS.

virtual int getGeneralRiskParamCount(void);

virtual const YDGeneralRiskParam *getGeneralRiskParam(int pos);

1

2

for(int i = 0; i < pApi->getGeneralRiskParamCount(); i++) {

  YDGeneralRiskParam *param = pApi->getGeneralRiskParam(i);

}

1

2

3

virtual void notifyCaughtUp(void)1

YD Trading System C++ API Programming Guide

32 / 135

af://n1562
af://n1567
af://n1568


ConditionA

ConditionB

notifyEvent

TCPTradeDisconnected
Connect

notifyEvent

TCPTradeConnected
ReadyForLogin login

notifyLogin

notifyOrder

notifyTrade

notifyCaughtUp

notifyEvent

ServerRestarted

If the data fingerprint of the OMS does not change, the instance ID should be checked. The instance ID varies after the 
OMS is started each time, so it can be used to check whether the OMS has been restarted. The following three possibilities 
should be considered when checking whether the OMS is restarted and whether the HA function of the API is enabled;

If the OMS is not restarted, it means that the disconnection is caused by a network problem, and the system will go 
on to conduct the subsequent steps normally (ConditionA);

If the OMS is restarted and the HA function of API is enabled, the subsequent steps will be conducted normally 
(ConditionA). At this time, the notifyEvent (YD_AE_ServerSwitch) callback will be received before notifyLogin, indicating 
that a main /standby server switching has been conducted.

If the HA function of the API is not enabled, it will directly enter the termination logic operation (ConditionB)

After entering the termination logic operation, generally, the API will call the "exit()" system call to exit the entire process, 
which, together with the strategy program, will exit the system. In order to prevent this, the API can be destroyed actively 
through Destruction under notifyEvent(YD_AE_ServerRestarted) to skip over calling "Exit" by the API.

In summary, when the OMS is restarted within the same trading day, YD API can provide investors with three different levels of 
processing methods:

Restarting the process: This method is the cleanest, simplest and almost error-free in operation. The strategy program can 
receive trading flows from the OMS from the beginning again and restores to the latest state. The disadvantage is that the 
strategy program is liable to exit jointly, which may show a relatively low operability in production.

Re-establishing API instances: This method is relatively clean and will not cause the policy program to exit. After instances are 
re-established, the API will push all trading flows again. If the strategy program aims to save and reuse the local trading flows, it 
may need to merge the trading flows retransmitted by the API, and the strategy program should ensure that the access to the 
destroyed instance data is prevented during the re-establishment, otherwise the program will crash, so the strategy program 
should be controlled carefully. During the re-establishment of the instances, some unknown timeout orders at the strategy 
program end and those orders from an external system may need to be handled. Refer to High Availability for details.

Re-establishing the connection: Namely enabling the connection under the HA mode that has little impact on the strategy 
program. When an automatic switching is made, just notify the policy program of the HA switching through 
notifyEvent(YD_AE_ServerSwitch). Considering that the strategy program usually has the ability to handle unknown timeout 
orders at the strategy end and those orders from an external system, this method is the most friendly to the strategy program. 
Refer to High Availability for details under this mode.

3.3.1.1 High availability  

In order to meet the requirements of market makers and investors attaching importance to availability, YD launched an HA cluster 
function, which can ensure the maximum business continuity. In cases of hardware crashes, program errors and other failures of 
the OMS, investors' trading can recover within the shortest period of time.

The HA cluster is a hot standby one composed of three servers, including two OMS servers running ydServer and one arbitration 
server running ydArb. In order to meet the balance between performance and availability of different users, the hardware 
configuration of the main/standby OMS servers can be subject to different combinations:

Highest protection: Common main and standby servers are used to ensure that failures of the main server can be prevented as 
much as possible. Even if a failure occurs, to the utmost extent, the standby server can also be successfully started and used to 
take over the trading. For the current version, the look-through performance of common servers after performance 
optimization is 500ns worse than that of the overclocking machines, which is more suitable for market makers, broker-dealers 
and other users who extremely attach importance to system stability and trading availability.

Performance maintenance and protection: The main and standby servers are an overclocking machine and a common server, 
respectively. Considering that current overclocking machines are relatively stable and usually do not fail, most of the orders are 
handled with overclocking machines relying on their highest performance. Once an overclocking machine fails, since the 
common server used by the standby machine is extremely stable, the standby server, to the utmost extent, can also be 
successfully started and used to take over the trading. This method attaches importance on both performance and availability. 
The performance, though being relatively low, can help to ensure the trading continuity in case of server switching.

Highest performance: Both the main and standby servers are overclocking machines to ensure the trading performance to the 
utmost extent. However, since the shelf time and aging time for the main server are the same as those for the standby server, 
the standby server will not be started sometimes in case of main/standby switching. However, the stability of overclocking 
machines has been greatly enhanced, so almost no failure can be caused. This configuration combination is suitable for most 
investors.

An arbitration network should be established for all three servers in the high-availability (HA) cluster to transmit heartbeat 
messages, trading flows and start/stop control commands. The arbitration network only needs to ensure the arbiter is connected to 
main/standby servers, while the connectivity between main/standby servers is not required. Based on about 600MB per connection 
a day, a general gigabit network can meet the bandwidth requirements of the arbitration network. The network management 
system can be used as the arbitration network if the capacity of its system meets the bandwidth requirements. It is suggested to 
configure the investment trading network as a backup for the arbitration network to prevent invalid switching errors due to 
arbitration network failure. All trading flows are concentrated on the arbitration network when it is running smoothly, while there is 
no trading flow on the trading network. The trading flows will be switched to the trading network when the arbitration network fails. 
If the arbiter cannot be connected to the main server via the arbitration network, it will try to contact the main server through the 
standby network. If the connection fails again, it is more feasible to switch from the main server to the standby one as investors are 
most likely unable to connect to the OMS at this time.

The main component functions of the HA cluster are as follows:

YD Trading System C++ API Programming Guide

33 / 135

af://n1598


ydArb：YdArb: A perpetual arbitration program used for arbiters. The availability of the cluster can be monitored through 
heartbeat messages. When the main site fails, the standby site will be actively notified to start to replace the main site, and the 
trading data (trading flows of an exchange and local OMS) will be transmitted continuously from the main site to the standby 
site to ensure that the standby site can start up as quickly as possible.

ydGuard: A perpetual daemon of ydServer used for main and standby servers. It is used for detecting the status of ydServer 
and reporting it to ydArb. The main server can transmit the trading data from ydGuard to ydArb, while the ydGuard of the 
standby OMS can receive the trading data from ydArb. The ydGuard data transmission of the main server is asynchronous with 
the trading through the ydServer. It is very likely that a notification has been sent to investors but not synchronized to the 
standby OMS.

 

Before connecting to an HA cluster, the API configuration files should be modified according to the following example.

During normal operation, the ydServer process of the main server is enabled, while the ydServer process of the standby server is 
stopped. The cluster composed of ydArb and ydGuard continuously transmits the trading flow from the main server to the standby 
OMS through the arbiter in real-time. At this time, the investor's API is connected to the ydServer of the main server for trading.

In case of main/standby server switching, the ydServer of the standby server will be started, and the synchronized trading data will 
be loaded to recover to the state before the main server fails. After YD API detects a disconnection, it will poll the IP addresses of the 
main and standby servers until a reconnection has been made. For the details of the subsequent steps after reconnection, refer to 
Trading Reconnection for more details. Due to the inherent complexity for main /standby server switching, the following problems 
are inevitable and should be handled by investors:

Local unknown timeout order: If the OMS fails after an order is sent by the strategy program and before it is sent by the OMS 
to an exchange. The strategy program will always wait for the notification to update the order status, however, since the order 
is not submitted to the exchange, for the OMS and the exchange, this order does not exist, and of course it is impossible to 
cancel this order. Therefore, the strategy program should be established with a timeout mechanism. In case of main/standby 
server switching, those local timeout orders at the strategy end should be canceled actively. Please note that the causes and 
consequences regarding local timeout orders are different from those regarding the Unknown Timeout Order, and accordingly 
the processing methods are also different.

Failing in determination of relationship between an order and the corresponding trade: If the OMS fails after an order is sent 
by the OMS and before the trading flow of the main server is synchronized to the standby one, it is obvious that after the 
failure, the strategy program has not received the order notification from the corresponding exchange (otherwise, there will be 
no missed orders for special treatment). After the standby OMS is started, YD will ensure that no order missing will be caused, 
however, since the local trading flow of the main server has not been synchronized, the order notification re-sent by the 
standby OMS will contain OrderSysID, OrderLocalID and RealConnectionID except for OrderRef. After receiving this notification, 
the investor cannot match this order with that recorded by the strategy program end. When OrderRef is -1, the order can be 
handled according to the common external order submission logic, while if the order fails to match that of the strategy 
program end, it should be handled according to the local unknown timeout order processing logic.

The single-host HA mode is a special case for the dual-host HA mode, which means making two IP addresses be the same under the 
dual-host HA mode. Their actual effects are basically the same. The single-host HA mode simplifies the handling process when the 
strategy program and the OMS are restarted within the same trading day, and therefore investors are suggested to choose the 
single-host HA mode as much as possible. The configuration example of the corresponding configuration files for the single-host HA 
mode is as follows:

RecoverySiteCount=2

TradingServerIP=<ip of master host>

TradingServerPort=<port of master host>

TradingServerIP2=<ip of slave host>

TradingServerPort2=<port of slave host>

1

2

3

4

5

YD Trading System C++ API Programming Guide

34 / 135



notifyEvent

TCPMarketDataDisconnected
Connect

notifyEvent

TCPMarketDataConnected

notifyEvent

XTCPTradeDisconnected
Connect

notifyEvent

XTCPTradeconnected

3.3.2 Market data reconnection  

When the API detects that the TCP market data connection with the OMS is interrupted or timed out, the API will call back the 
notifyEvent(YD_AE_TCPMarketDataDisconnected) to notify of the disconnection between the market data thread and the OMS, then 
the API will continue to initiate the connection to the OMS and call back the notifyEvent(YD_AE_TCPMarketDataConnected) 
notification after reconnecting. Compared with the process of trading reconnection, market data reconnection is much simpler. 
After the reconnection, re-subscription to the market data will be unnecessary since the API will automatically re-subscribe to the 
instrument subscribed before the disconnection and continue to collect the TCP market data.

3.3.3 XTCP reconnection  

When the API detects that the XTCP trading connection with the OMS is interrupted or timed out, the API will call back the 
notifyEvent(YD_AE_XTCPTradeDisconnected) to notify of the disconnection between the XTCP thread and the OMS, then the API will 
continue to initiate the connection to the OMS and call back the notifyEvent(YD_AE_XTCPTradeConnected) notification after 
reconnecting.

If investors order during reconnection after disconnection, the API will downgrade to choose the normal TCP order submission 
mode.

3.4 Destruction  
The strategy program can be used for actively destroying API instances to avoid memory leakage or API's exiting the process. Since 
the structure of YD API is relatively complex and cannot be cleaned up by deleting instances, YD provides startDestroy in ydApi for 
instance cleaning. Please never try to delete API instances directly.

The startDestroy initiates a two-stage asynchronous destruction process. The notification regarding this function does not mean a 
complete cleanup.

The main task in the first stage is to try to disable all connections and threads regarding API, and then the completion of which 
can be notified through "YDListener.notifyBeforeApiDestroy". In this process, all trading functions including the callback 
function of "notifyBeforeApiDestroy" will be disabled for API, and the trading callback function of YDListener will not be 
recalled. However, all query functions of ydApi and the data managed in ydExtendedApi can still be used.

The main task of the second stage is to destroy all data. and then the completion of cleaning will be notified through 
"YDListener.notifyAfterApiDestroy". In this process, all API functions including the callback function of notifyAfterApiDestroy 
and all pointers obtained from API will be disabled.

After the cleanup, please destroy the YDListener subclass instance you implemented and instantiated. This function does not 
destroy the instance for you. In the strategy program, you can re-create new API instances.

RecoverySiteCount=1

TradingServerIP=<ip of master host>

TradingServerPort=<port of master host>

1

2

3

virtual void startDestroy(void)1

virtual void notifyBeforeApiDestroy(void)1

virtual void notifyAfterApiDestroy(void)1

YD Trading System C++ API Programming Guide

35 / 135

af://n1628
af://n1631
af://n1635


Exchange Type of OMS Total equity of different OMSs maximum money usage Equity proportion

SHFE YD 80 40% 32

DCE YD 80 50% 40

CFFEX YD 80 10% 8

CZCE Other 20   20

4 Fund  
4.1 Equity  

4.1.1 Pre balance  

Pre balance, also known as pre-day equity, is mainly composed of pre equity. The pre balance calculation methods of futures 
exchanges and stock exchanges are different, the following will introduce respectively.

In order to facilitate brokers to configure and use the YD system and reduce unnecessary configuration errors, YD directly uses 
the pre-day documents of the existing primary connection system as the pre-day data of YD after conversion, which include 
pre balance, pre-day position, margin rate, commission rate and some risk control rules, etc. At present, the futures exchange 
pre-day data of YD can be read directly from CTP syncmerge or CTP heterogeneous data interface, while the stock option pre-
day data of stock exchanges is obtained from different data sources. In order to meet the demand and ensure the checking 
relationship of different data sources, YD has introduced some internal calculation methods. If the primary OMS used by 
brokers is of other brands, YD will continue to add new pre-day data conversion programs to meet the unrestricted demand of 
investors to participate in trading in brokers' sub-positions.

Pre balance can be obtained through "YDAccount.PreBalance".

4.1.1.1 Pre balance of futures exchange  

The data of futures exchanges is simply calculated after reading from CTP syncmerge or CTP heterogeneous data interface. The 
calculation formula is as follows: Where, pre equity, pledged amount, currency pledge-in and pledge-out amounts are directly read 
from the source data, and fixed deduction is set in the YD system.

At present, in the market, brokers and investors always sign agreements to agree on fixed equities of each secondary OMS. Brokers 
modify pre-day data for fund splitting. This approach is simple, but the opportunity brought by a market quote of an exchange is 
always hard to seize due to lack of funds, even if the funds can be allocated through depositing/withdrawing, the complex review of 
manual operation always cause missing of trading opportunities. Therefore, YD considered this at the beginning of the design. 
When investors trade through different YD OMSs at the same time, it is suggested that the brokers should not split the investors' 
pre-equities, so that the pre-equities read on each OMS can be the same, and then the proportions of investors' pre-equities can be 
controlled through each OMS based on maximum money usage parameters. Under the help of YD's fund transfer manager, when 
the sum of the maximum money usage of the same investor for all OMSs is less than or equal to 100%, the investor can modify the 
maximum money usage at its own discretion in order to achieve the effect of real-time fund transfer. For the meaning of maximum 
money usage, refer to Today Balance for more details.

Fixed deduction refers to a function designed by YD that can allow investors use maximum money usage on the OMS and other 
secondary OMSs for trading at the same time. As shown in the following table, assuming that an investor has a 1 million-equity, 
800,000 is allocated on the OMS, and 200,000, allocated on other secondary OMSs, then after a fixed deduction, the maximum 
money usage function can still work normally.

4.1.1.2 Pre balance of stock exchange  

Pre-equities of investors in the stock markets of Shanghai and Shenzhen can be directly read by stock exchanges and futures 
exchanges and then dynamically split based on the fund use proportion, which is a practice recommended by YD. In order to meet 
the practical and actual needs of investors in current markets, YD also supports splitting based on a proportion of usable funds set 
at the level of each investor (hereinafter referred to as the split proportion, which is defined in the background and cannot be read 
on API). This function can be used by calculating data from the three data sources namely cfmmc reported documents (from the 
monitoring center, only data of the stock markets of Shanghai and Shenzhen are involved), CSDC Shanghai data and CSDC Shenzhen 
data. The whole calculation process is relatively complex. Although it is hard for YD to guarantee that the usable funds displayed on 
the OMS after splitting based on the proportions are the same as the results calculated based on the splitting proportion shown on 
the primary OMS, YD can guarantee that the sum of the pre-equities in the stock markets of Shanghai and Shenzhen is always equal 
to the pre equity shown on the primary OMS. Just read the following for the specific calculation method of YD. If you are not 
interested in it, just skip it directly.

On the exercise delivery date, due to the difference in the checking relationship among cfmmc reported documents (from the 
monitoring center, only data of the stock markets of Shanghai and Shenzhen are involved), CSDC Shanghai data and CSDC Shenzhen 
data, the usable funds applicable to the YD system should be calculated first and used as the splitting basis.

Then the pre equity of YD system can be obtained by splitting the calculated available fund.

After a simple combination of the three formulas, it can be seen that the total of pre-equities in the YD system is equal to that in the 
document of the monitoring center.

YD Trading System C++ API Programming Guide

36 / 135

af://n1647
af://n1648
af://n1649
af://n1654
af://n1690


  CFFEX DCE SHFE

Initial maximum money usage 50% 30% 20%

Current balance 50 30 20

Current balance after a deposit of CNY 1 million 100 60 40

Emergency fund transfer required in SHFE and set maximum money usage 10% 20% 70%

Current balance after transfer 20 40 140

Current balance after a withdrawal of CNY 500,000 15 30 105

The fixed deduction function, just like that of futures exchanges, is still effective, however, if other secondary OMS systems support 
proportion-based available fund splitting, the fixed deduction function will be unavailable, so it is almost meaningless in the whole 
process. Generally, the fixed deduction value is 0.

4.1.2 Today balance  

In the design of YD, the static equities refer to the overall equity of the day at the investor's level. The static equities of an investor 
on any YD OMS are the same, and the deposit / withdrawal amounts are also at the investor's level, that is to say, as long as the 
investor conducts depositing / withdrawing operations through the primary OMS, the corresponding deposit / withdrawal amounts 
of this investor can be shown on any YD OMS and the amounts are the same as those shown on the primary OMS. Thus, the 
concept introduction of maximum money usage can be allowed.

If a broker splits its fund based on a fixed amount or an available fund proportion, the deposit/withdrawal amounts can be 
expressed as those for single OMS. The static equity only represents the investor's equity of that very day shown on the 
corresponding OMS, and in this case, the maximum money usage should not be used, namely the maximum money usage should 
be kept at 100%, otherwise a fund confusion will be caused.

Investors using ydExtendedApi can call "YDExtendedAccount.staticCashBalance()" to obtain static equities.  Please refer to the 
calculation method of net deposit and withdrawal amount:Net deposit and withdrawal

Regardless of the operation mode, the current balance represents the current investor's equity shown on the corresponding OMS at 
the very day. If you use the OMS according to the original design of YD, the maximum money usage can be adopted to allow 
automatic deposit/withdrawal synchronization and investors' independent fund transfer.

Investors using ydExtendedApi can obtain the current balance through "YDExtendedAccount.Balance".

4.1.2.1 Maximum money usage  

YD supports splitting the pre-day equity of different systems by setting maximum money usage. As long as the total money usage of 
each OMS does not exceed 100%, the margin will not be overdrawn. The maximum money usage can be obtained from 
"YDAccount.MaxMoneyUsage".

When brokers do not split the funds and reasonably set the maximum money usage for different YD OMSs, investors can use the 
automatic depositing/withdrawing and independent transfer functions, see the following example.

For example, an investor trades through three YD systems in CFFEX, DCE and SHFE at the same time. Its static equity is CNY 1 million 
and the maximum money usage are 50%, 30% and 20%, respectively. For simplicity, the impact of margin is ignored in the example, 
and those cases such as withdrawal amount and set maximum money usage causing insufficient fund will be intercepted by the 
system, therefore, the following, by default, do not trigger the limits.

The fund synchronization system (ydSync) can be used for reading the deposit/withdrawal flow of the CTP risk control system in real 
time and then synchronize it to all YD OMSs; The fund transfer manager (ydFundManager) allow the fund transfer of different YD 
OMSs. Brokers can issue transfer accounts for investors so that they can log in to the fund transfer manager to transfer funds. If 
necessary, just contact the brokers for installation, however the prerequisite for the above functions is that brokers have not split 
the fund.

4.1.3 Other equities  

In order to finally calculate the fund and market value equities, YD calls the trading-related part of the fund and market value equity 
formulas as dynamic equity. The dynamic equity is only related to the exchange where the OMS belongs to. The dynamic equities of 
two OMSs with management seats arranged in the same exchange are the same for the same investor. However, if one of the above 
two OMSs is configured with an all non-management seats, it cannot receive the trading data from other OMSs. At this time, only 
the dynamic equity of the OMS with a management seat is accurate. Of course, if this exchange has only one OMS, its dynamic 
equity will always be accurate regardless of the used seat. The formula for calculating the dynamic equity of a single OMS is as 
follows:

Under the concept of dynamic equity, the formulas for calculating the fund and market value equities of a single OMS are as follows. 
Based on the above reasons, the fund and market value equities of a single OMS are also simple and addible:

YD Trading System C++ API Programming Guide

37 / 135

af://n1701
af://n1709
af://n1750


The above equities can only be obtained through ydExtendedApi:

Dynamic equity: Obtained through calling "YDExtendedAccount.dynamicCashBalance()"

Today fund equity: Obtained through calling "YDExtendedAccount.cashBalance()"

Pre fund equity: Obtained through calling "YDExtendedAccount.preCashBalance()"

Today market value equity: Obtained through calling "YDExtendedAccount.marketValue()"

Pre market value equity: Obtained through calling "YDExtendedAccount.preMarketValue()"

4.2 Usable  

Investors using ydExtendedApi can call "YDExtendedAccount.usable()" to obtain usable funds.Regulatory regulations require that 
position losses be deducted, so the YD OMS deducted position losses when calculating available funds. After the promulgation of 
the Futures Law, the requirement that position profits are not included in available funds was deleted. Local securities regulatory 
bureaus also have different regulations on this. Therefore, starting from version 1.386.40.38 , brokers can set a function switch for 
customers to include position profits in available funds. After turning it on, the investor's position profits will be included in available 
funds. Investors can determine whether position profits are included in available funds by checking whether AccountFlag in 
YDAccount is set to YD_AF_UsePositionProfit.

"YDExtendedAccount.Available" is similar to a usable fund. It can be seen from the following formula that Available does not 
include the position loss, so an Available cannot be considered as a usable fund.

Since the time and price settings for API and the OMS refreshing are not exactly the same, it may lead to the situation that the API 
shows sufficient funds, but the OMS refuses due to insufficient funds. Generally, this happens when the fund utilization rate is high. 
For confirming an order refused by the OMS due to insufficient funds, just contact the broker to obtain the fund information from 
the OMS log when the order is rejected. Please note that Available does not mean usable funds, the loss of "PositionProfit" should 
be deducted.

The latest usable funds and Available can only be displayed after refreshed and calculated according to the latest price. Refer to 
Fund Refresh Mechanism for the specific refresh method.

4.3 Net deposit and withdrawal  
The calculation formula for net deposit and withdrawal is:

When an investor has deposits and withdrawals, he/she can obtain the accumulated deposit amount through "YDAccount.Deposit", 
as well as obtain the accumulated withdrawal amount through "YDAccount.Withdraw". "YDAccount.Deposit" and 
"YDAccount.Withdraw" are monotonically increasing within a trading day. The net deposit and withdrawal of the day can be 
obtained by "YDAccount.Deposit - YDAccount.Withdraw".

The frozen withdrawal amount can be obtained through "YDAccount.FrozenWithdraw". The frozen withdrawal amount will continue 
to accumulate as the broker freezes withdrawals. When the broker retreats the frozen withdrawals, the amount of 
"YDAccount.FrozenWithdraw" will reduce accordingly, or the broker can also deduct the frozen amount that is the same as the 
withdrawal amount when making a formal withdrawal.

When a deposit or withdrawal is frozen, the related investor will be notified through "notifyAccount". Since the investor will also be 
notified when other fields of "YDAccount" change, he/she should check the above three fields in the program for deposits or 
withdrawals.

4.4 Cash Income and Expenditure  
Cash income and expenditure can be read from YDExtendedAccount.CashIn. Option premiums and spot income and expenditure 
are both included in cash income and expenditure.

When option and spot buyers place orders, cash income and expenditure will be frozen. As orders are gradually traded, the order-
frozen funds in cash income and expenditure will be gradually released, and accordingly the transaction funds deduction in cash 
income and expenditure will be increased. If the order is eventually cancelled, the order-frozen funds will be released at one time.

When option and spot sellers place orders, cash income and expenditure are not changed. As orders are gradually executed, the 
transaction funds are gradually added to cash income and expenditure. If the order is eventually cancelled, cash income and 
expenditure will not be changed.

4.4.1 Spot Order Income and Expenditure  

The calculation formula for spot buy order income and expenditure is as follows. When the order is a market order, the order price 
is the upper limit price. When the order is a limit order/FAK/FOK, the order price is the order price. The bond price only has a value 
when the trading security is a bond, and other spot is 0:

​

Stock sell order income and expenditure should always be 0.

virtual void notifyAccount(const YDAccount *pAccount)1

YD Trading System C++ API Programming Guide

38 / 135

af://n1770
af://n1778
af://n1785
af://n1789


4.4.2 Spot Trade income and expenditure  

The calculation formula for spot buy trade income and expenditure is as follows:

The calculation formula for spot sell trade income and expenditure is as follows:

Bond prices are only valuable when the trading securities are bonds, and other spot prices are 0.

4.4.3 Option Order premium  

The calculation formula for option buyers' order premium is:

Where, when the order is a market price one, the upper limit price shall prevail; When the order is a price-limited one/FAK/FOK, the 
order price shall prevail.

The calculation formula for option sellers' order premium is:

Where, the option sell order price is controlled by parameters (Name, Target) namely (SellOrderPremiumBasePrice, Options) in 
"YDSystemParam". The following shows how to handle different parameters by the system:

YD_CBT_PreSettlementPrice: Pre settlement price;

YD_CBT_OrderPrice: When the order is a market price one, the lower limit price shall prevail; When the order is a price-limited 
one/FAK/FOK, the order price shall prevail;

YD_CBT_None: No premium will be added, which is equal to the price of 0, namely the option seller will not get the premium 
when submitting orders. This is a default configuration and popular for mainstream systems.

4.4.4 Option Trade premium  

The calculation formula for option buyers' trade premium is:

The calculation formula for option sellers' trade premium is:

4.4.5 Profit / loss of futures positions  

For the refresh logic of position profit / loss, see Fund Refresh Mechanism.

4.5 Close profit/loss of futures  

For the logic of close pair position details, refer to Position Structure..

4.6 Option market value  

  

  

The pre-option market value and current option market value can be obtained through 
"YDExtendedAccount.PrePositionMarketValue" and "YDExtendedAccount.PositionMarketValue", respectively.

The current option market value calculated according to the latest price can only be shown after refresh. Refer to Fund Refresh 
Mechanism for the specific refresh method.

4.7 Commission  
Investors using ydExtendedApi can obtain the total commission of the account through YDExtendedAccount.Commission.

4.7.1 Cash Commission  

The order handling fee is charged after the order is successfully placed, the order cancellation fee is charged after the order is 
successfully cancelled, and the transaction fee is charged when the transaction is completed. The maximum possible transaction fee 
is frozen in advance after the spot buy and sell orders of SSE and SZSE are sent. The difference in transaction fee will be unfreeze 
accordingly when all orders are traded or cancelled .

YD Trading System C++ API Programming Guide

39 / 135

af://n1793
af://n1799
af://n1813
af://n1818
af://n1822
af://n1829
af://n1834
af://n1836


For more information about commission rate, please refer to Cash Commission Rate and Brokerage Fee Rate.

4.7.2 Derivative Commission  

The order commission fee is charged after the order is successfully placed, the cancel commission fee is charged after the order is 
successfully cancelled, and the transaction fee is charged when the transaction is completed. The transaction fee is frozen in 
advance after the stock option buy open orders (SSE, SZSE) as well as open orders (other futures exchanges), the calculation formula 
of frozen transaction fee is same as open comission fee, that order volume is used as oepn volume. Order price varies depending 
on the order's type: for market orders, the upper limit price is used, while for non-market-price orders, the order price is used. 
Transaction fees are not frozen for closing orders. 

For information on how to obtain the commission rate, see Commission Rate.

The commission calculation methods for position closing in different exchanges are different. YD maintains the pre position volume 
for commission calculation through "YDExtendedPosition.YDPositionForCommission". Investors can obtain the volume for today's 
position closing through "YDExtendedPosition.Position-YDExtendedPosition.YDPositionForCommission" for calculating the 
commission.

In order to determine whether the corresponding instrument supports a today's position closing priority or a pre position closing 
priority, investors can check whether the corresponding exchange regarding the instrument prefers today's position closing through 
"YDExchange.CloseTodayFirst".

The following is a brief description of the detailed today's position and pre position sequence each exchange when calculating the 
commission for position closing:

Please note that the position details for commission calculation, position closing profit/loss calculation and combined margin 
calculation are maintained separately, and therefore the position information should be properly selected according to the 
actual operation.

For SHFE and INE, dependent on the today's position closing or pre position closing instructions;

For CFFEX, DCE, GFEX and CZCE, today's position closing is preferred;

For SSE and SZSE, pre position closing is preferred.

The SSE does not charge any commission for short order selling, which is independent of the set commission parameters.

4.7.3 Exercise commission rate  

Exercise commission rate's calculation formula is:

Obtaining exercise commission rate, please refer to Commission Rate.

4.7.4 Derivatives message count commission  

Currently, all products from SHFE and INE, as well as some products from DCE and CZCE, have commenced collecting commissions 
based on message count. YD supports the collection of message count commission according to the OTR and message count tiers. 
For specific fee standards, please refer to the relevant notices of each exchange.

In certain circumstances, the message count commission can be waived. For instance, RFQ orders from exchanges other than SHFE 
and INE are not counted towards the message count, and market makers are not charged an message count commission. Investors 
can inspect "YDAccountInstrumentInfo.ExemptMessageCommissionYDOrderFlag" and the "YDOrderFlag" of the order to determine 
whether the order is included in the message count. If "YDOrderFlag > 
YDAccountInstrumentInfo.ExemptMessageCommissionYDOrderFlag", it is not included; otherwise, it should be included.

To ensure the rationality of the OTR under extreme conditions while aligning with the regulatory formula, YD employs the following 
calculation formula for the OTR:

YD Trading System C++ API Programming Guide

40 / 135

af://n1844
af://n1867
af://n1871


In the above formula, the definition of a successful order is as follows: if an order is partially or fully filled, then this order is counted 
as one successful order. Multiple executions from one order are not repeatedly counted.

The method for calculating the message count is as follows:

Limit order: If it's completely filled, only one order is counted. If it's cancelled, both one order and one cancel are counted.

FAK/FOK order: If completely filled, only one order is counted. If not filled or not completely filled and a cancel is generated, 
both one order and one cancel are counted.

Market order: If completely filled, only one order is counted. If not filled or not completely filled and a cancel is generated, both 
one order and one cancel are counted.

RFQ order: For options RFQ orders from the SHFE and INE, one message count is added. For futures RFQ orders from the SHFE 
and RFQ orders from other exchanges, they are not counted.

Combination (Arbitrage) order: the message count of each leg of a combination order is separately counted on each leg.

Exchange forced liquidation orders and non-futures company forced liquidation orders: both are included in the message 
count.

Forced reduction orders: are not included in the message count.

Erroneous orders for limit orders, FAK orders, FOK orders, and market orders: are not included in the message count.

Erroneous cancel orders for limit orders: are not included in the message count.

Combination and decomposition instructions, option exercise and waiver, options hedging, hedging after performance, 
erroneous orders, erroneous cancel: are not included in the message count.

Market makers are exempted from the message count commission for market-making varieties.

The message count declaration fee for options on the GFEX is calculated based on the aggregate calculation of option series. 
The option contracts of the same product and the same expiration date are aggregated and charged according to the message 
count gradient. Futures and options on other exchanges are calculated based on the aggregate calculation of the contract.

When placing an order, YD will charge commissions according to the worst possible scenario for the order. After receiving the 
notification, it will deduct the over-calculated message count according to the actual situation of the notification. For example, if the 
OMS receives a limit order and counts 2 message counts, if the order is rejected, 2 message counts will be deducted. If the order is 
subsequently cancelled, no message count will be deducted. The message count of RFQ orders can be obtained through 
"YDAccountInstrumentInfo.RFQCount". Since the RFQ order does not send a report to ordinary investors, when placing an option 
RFQ order in the SHFE and INE, if the message count commission generated by the RFQ order is not passed, the RFQ order will be 
directly discarded without notifying the customer. However, this error message will be recorded in the OMS's inputFlow.txt, which is 
the same as other failed RFQ orders.

The message count commission uses a segmented accumulation calculation method. Please refer to the calculation example in the 
Message Count Commission Rate. Investors using "ydExtendedApi" can obtain the total message count commission of the account 
through "YDExtendedAccount.MessageCommission".

Due to improper control of the investor's program, it may cause a large amount of unexpected message count commissions. In 
order to avoid the significant loss caused by the message count commissions to the investors, please contact the broker to set the 
Message Count Risk Control.

4.8 Fund refresh mechanism  
The YD margin, position profit/loss and position market value are not queried from an OMS but are calculated directly at the client 
according to the same method as that used on the OMS. Therefore, it is necessary to refresh the margin and position profit/loss 
during the trading session in order to keep the available funds in line with the OMS's.

Since '1.98', YD API has provided a variety of mechanisms to automatically refresh the margin rate and position profit/loss during 
trading, and to some great extents, supported investors using different APIs. By setting the RecalcMode parameter in the API 
configuration file, three refresh mechanisms of APIs can be specified: Close, Subscribe to Market Data Only and Auto. Three 
mechanisms are introduced separately in the following.

4.8.1 Close  

"Close" means that the automatic refresh mechanism can be completely closed. It is up to investors to decide the refresh time and 
method.

For investors using ydApi, because no funds and positions are calculated through ydApi, all the refresh work should be completed 
by investors rather than the API.

For investors using ydExtendedApi, when necessary, they can refresh margins and position profit/loss by calling 
"recalcMarginAndPositionProfit" and refresh position market value by calling "recalcPositionMarketValue". Both functions are 
provided without input parameters. Since the "Close" mode does not support automatical subscribing to the market data, TCP 
market data (ConnectTCPMarketData=yes) collection must be ensured, otherwise the calculation and refresh should be conducted 
based on the pre-day market data.

4.8.2 Subscribe to market data  

The "Subscribe to Market Data" mode can help investors automatically subscribe to and refresh the market data  in relation to all 
current traded instruments or position instruments. If an option instrument is automatically subscribed to, its underlying 
instrument will be included automatically for the sake of accurate calculation of the option margin. However, the automatically 
subscribed market data will not be directly sent to investors through "notifyMarketData". It can be obtained through 
"notifyMarketData" if necessary. The subscription should be made separately through "Subscribe". This model is helpful to investors 
using ydApi and ydExtendedApi.

YD Trading System C++ API Programming Guide

41 / 135

af://n1906
af://n1909
af://n1913


For investors using ydApi, the "YDMarketData" market data of the API can be refreshed when new market data arrives. Investors can 
directly read the price of the corresponding instrument for refresh.

For investors using "ydExtendedApi", the market data can be saved in "ydExtendedApi". When necessary, the investors can refresh 
the margin and position profit/loss by calling "recalcMarginAndPositionProfit", and refresh the position market value by calling 
"recalcPositionMarketValue". Both functions are provided without input parameters.

4.8.3 Auto mode  

The "Auto" mode covers all functions of the "Subscribe to Market Data" mode, and based on which, further supports for different 
types of APIs are provided.

For investors using ydApi, in order to help to stagger the possible order handling time, the API can notify them of the safe refresh 
time detected by the system through "notifyRecalcTime". They can call their own refresh method through this function.

The safe refresh time is calculated based on the last received TCP market data time and the settings of 
"RecalcMarginPositionProfitGap" and "RecalcFreeGap" of the API configuration file. "RecalcMarginPositionProfitGap" refers to the 
minimum gap between two consecutive refreshes, which can be set to 1,000 ms. The setting below 1,000 ms should be adjusted to 
1,000 ms. "RecalcFreeGap" refers to the safe gap between the safe refresh time and the time before and after the arrival of market 
data, the setting range of which is 0~100 ms. All settings beyond the range should be adjusted to the nearest valid value.

The specific calculation method is that after the last safe refresh time reaches RecalcMarginPositionProfitGap, assuming that the 
TCP market data received by API last time is 0 ms, and the 250 ms is a detection period. In this detection period, the start time of the 
remaining time period after cancelling the RecalcFreeGap ms before and after the detection period should be the safe refresh time. 
Assuming RecalcFreeGap is 100 ms, the time receiving the market data is 0 ms, the feasible time period is 100 ms~150 ms, the 
remaining time period is 50 ms and then the safe refresh time should be 100 ms.

Considering that the market data arrives continuously, causing the safe refresh time to be missed continuously, YD has set a 
protection time, namely if the last refresh time is more than 3 times of the RecalcMarginPositionProfitGap, ydApi will notify the 
customers to force the refresh through notifyRecalcTime.

For investors using ydExtendedApi, the API will automatically call "recalcMarginAndPositionProfit" and "recalcPositionMarketValue" 
to refresh at the safe refresh time, so coding is unnecessary. At this time, notifyRecalcTime will be used to notify investors after 
calling and completing the above two refresh functions, and investors can decide whether to do other work except refresh at this 
time.

YD has tried its best to help investors stagger those possible order handling time periods, but investors' order submission behavior 
might exceed YD's expectations. Therefore, if the refresh time under the "Auto" mode clashes with the order submission time, the 
parameters can be adjusted or the "Subscribe to Market Data" mode can be selected to determine the refresh time.

YD Trading System C++ API Programming Guide

42 / 135

af://n1917


Field Description

getInstrument() Instrument

PositionDate

Position date
YD_PSD_History: Pre position
YD_PSD_Today: Today's position
If the exchange does not make a distinction between today's positions and pre positions,
YD_PSD_History should be used to represent them

PositionDirection
Position direction
YD_PD_Long: long position
YD_PD_Short: short position

HedgeFlag

The definition of hedge flags is different for futures exchanges and stock option exchanges.
The definition of hedge flag for futures exchanges is as follows:
YD_HF_Speculation=1: Speculation
YD_HF_Arbitrage=2: Arbitrage, only supported by CFFEX. In order to facilitate the coding, YD
provides a parameterized representation to determine whether to support arbitrage trading and
positions. When the value of "YDExchange.UseArbitragePosition" is "True", it means that the
exchange supports arbitrage trading and positions, otherwise it does not support
YD_HF_Hedge=3: hedge
The definition of hedge flag for stock option exchanges is as follows:
YD_HF_Normal=1: Normal
YD_HF_Covered=3: covered

Position

For the total positions under the current primary keys,
if a distinction is made between today's positions and pre positions, it means the today's
positions and pre positions of an instrument regarding a direction and a hedge flag, respectively;
if no any distinction is made between today's positions and pre positions, it means the total
positions of the instrument regarding a position direction and a hedge flag

PositionDetailList

The position chain list used for profit/ loss calculation under the current primary keys is
composed of positions that have not been closed according to the trading sequence
Position closing always starts one by one from the head of the chain list, namely, according to
the principle of Opening-Sequence Based Closing.

YDPositionForCommission
Pre positions used for commission calculation under current primary keys are only valid when
no distinction is made between today's positions and pre positions. At this time, the today's
positions used for commission calculation is "Position-YDPositionForCommission"

5 Positions  
5.1 Derivatives position model  
Different exchanges have different position management methods. Some exchanges strictly make a distinction between today's 
positions and pre positions and have special instructions for current/pre position closing; Some exchanges do not strictly make a 
distinction between today's positions and pre positions, nor do they have special instructions for current/pre position closing except 
for individual operations (such as commission for today's position closing). Therefore, YD has established the corresponding 
position model according to the position model of different exchanges. In order to distinguish the position model used by current 
exchanges, investors can check the value of "YDExchange.UseTodayPosition": When this value is "True", it means that the exchange 
makes a distinction between today's positions and pre positions, and two corresponding position model will be adopted by the YD 
system to represent today's positions and pre positions; When the value is "False", it means that the exchange does not make a 
distinction between today's positions and pre positions, and only one position structure will be adopted by the YD system to 
represent the corresponding positions.

The position organization mode of YDExtendedApi is basically the same as the internal one of YD OMSs, so the following will take 
the "YDExtendedPosition" position of YDExtendedApi as an example to introduce the rules and related logic used to calculate the 
commissions, position closing profit/loss and combined service through the above two position model. The fields related to the 
position structure of YDExtendedPosition are shown below. The primary keys are instrument, position date, position direction and 
hedge flag.

For a position chain list involved in combinations, the traditional combined positions are sequenced according to the combination 
sequence; For a position chain list not involved in combinations, the single-leg positions are sequenced according to the trading 
sequence. Due to the frequent changes in the structure of the traditional combined position details, YD did not directly open ports 
for traditional combined positions and single-leg positions in the above position model. Refer to the relevant query functions for 
querying the traditional combined positions. At present, only the exchanges that do not make a distinction between today's 
positions and pre positions support combination and decombination.

If an exchange makes a distinction between today's positions and pre positions,

The following operations will be performed on the position with PositionDate set to YD_PSD_Today when opening a 
position.

Adding "Position" of the corresponding position to update the total positions

Adding the new trade volume after opening to the end of the position chain list for calculating the profit/loss of the 
above-mentioned positions

YD Trading System C++ API Programming Guide

43 / 135

af://n1925
af://n1926


Field Description

getYDPosition() Pre-position volume. Pre-position volume calculated according to the principle of Opening-Sequence Based Closing.

PositionByOrder
Order position volume. The position volume calculated based on the executed quantity in the order report.Available

Closing Quantity can be 

PossibleOpenVolume

Potential Position Opening Quantity. The sum of the order quantity for outstanding opening orders corresponding to

the position. After the orders are completed (fully filled, canceled, or rejected), the potential opening quantity will be
reduced by the unfilled quantity in the orders.

OpenFrozen
Frozen Opening Quantity. The sum of the unfilled quantity from outstanding opening orders corresponding to the
position. After the order is completed (fully filled, canceled, or rejected), the frozen opening quantity of that order
becomes zero.

CloseFrozen

Frozen Closing Quantity, the position that is frozen for closing cannot be liquidated or applied for exercise or

abandonment.The sum of the unfilled quantity from outstanding closing orders corresponding to the position,
exercise freeze quantity, abandonment freeze quantity, and the traditional portfolio position of stock options in
Shanghai and Shenzhen. After the order is completed (fully filled, canceled, rejected, or position unwound), the

closing freeze quantity of that order becomes zero.

ExecFrozen Frozen Exercise Quantity. The sum of the application quantity for exercising options corresponding to the position.

AbandonExecFrozen
Frozen Abandonment Quantity. The sum of the application quantity for abandoning the right to exercise options

corresponding to the position.

TotalCombPositions Position Quantity in the Portfolio.

CombPositionCount The number of records detailing the position quantity involved in the traditional portfolio.

TotalOpenPrice

Total cost of average open price. When opening a position, increase the opening cost of the open transaction.
. When closing a position, subtract the opening cost of

the open transaction in the order of first to open and first to close. If more than one open transaction is invloved, the
cumulative deduction of the opening cost of the involved open trasactions is subtracted.

getOpenPrice()
Average opening price.  The average openning price is 0 when
the position is 0.

TotalOriginalOpenPrice

Total cost of average position price. When opening a position, increase the opening cost of the open transaction.
. When closing a position, substract the cost calculated

at the average price of the position. \text{getOriginalOpenPrice} \times \text{ClosePosition}, keep the average price of
the position unchanged.

When closing, investors should specify "YDInputOrder.OffsetFlag" as "YD_OF_CloseToday" or "YD_OF_CloseYesterday", 
which mean today's position closing or pre position closing, respectively (if set to "YD_OF_Close", it will be automatically 
converted to "YD_OF_CloseYesterday"), and the following operations will be completed for the affected positions:

Deducting the "Position" of today's positions or pre positions to update the volume of today's positions or pre 
positions

Updating the position chain list for profit/loss calculation according to the principle of Opening-Sequence Based 
Closing.

When an exchange does not make a distinction between today's positions and pre positions,

The following operations will be performed on the position with PositionDate set to YD_PSD_Yesterday when opening a 
position.

Adding "Position" of the corresponding position to update the total positions

Adding the new opening transaction to the tail of the position chain list for calculating the profit/loss of the above-
mentioned positions

If the exchange supports traditional combined position service, adding the new opening transaction to the tail of the 
traditional combined position chain list of the above-mentioned positions.

When closing, investors should specify YDInputOrder.OffsetFlag as YD_OF_Close, which means position closing (if set to 
YD_OF_CloseToday or YD_OF_CloseYesterday, it will be automatically converted to YD_OF_Close), and the following 
operations will be completed for the positions when PositionDate involves YD_PSD_Yesterday:

Deducting "Position" of corresponding positions to update the total positions

Updating the position chain list for profit/loss calculation according to the principle of "Opening-Sequence Based 
Closing".

If the value of "YDExchange.CloseTodayFirst" is "False", YDPositionForCommission will be deducted first; If the value 
of "YDExchange.CloseTodayFirst" is "True", only when "the Position closing volume" > "Today's positions used for 
commission calculation", the part that cannot be covered by today's positions used for commission calculation 
should be deducted from YDPositionForCommission

If the exchange supports automatic decombination of traditional combined positions, the items in the single-leg 
positions should be matched according to the principle of Opening-Sequence Based Closing until the closing volume 
is covered; If a complete coverage fails, the items in the traditional combined positions should be matched according 
to the principle of Opening-Sequence Based Closing until the remaining closing volume is covered, and the traditional 
combined positions and single-leg positions of the opposite leg in the traditional combined positions involved should 
be modified

When combining, the items that can cover the traditional combination volume from the head of the two-position single-
leg positions for traditional combination should be selected and added to the end of the two-position combinations; When 
decombining, the items that can cover the decombination volume from the combined position chain list with two-position 
combinations should be selected and inserted into the appropriate points of the two-position single-leg positions, namely, 
the items for keeping the single-leg positions should be sequenced according to the trading sequence.

In addition to the aforementioned fields related to the position model, YDExtendedPosition also provides the following extended 
position fields.

YD Trading System C++ API Programming Guide

44 / 135



Field Description

getOriginalOpenPrice()
Average position price.  The average position
price is 0 when the position is 0.

PositionProfit Futures Position Profit/Loss. For more details, please refer to Profit/Loss on Futures Positions.

CloseProfit

Daily Mark-to-Market Contract's Closing Profit/Loss. In DCE's RULE margin system, options contracts are considered
as daily mark-to-market contracts. The profit/loss from closing options positions is calculated in this field. In other

cases, the profit/loss from closing options positions is calculated in the non-daily mark-to-market closing profit/loss.
For more details, please refer to Closing Profit/Loss.

OtherCloseProfit Closing Profit/Loss of Non-Daily Mark-to-Market Instruments. For more details, please refer to Closing Profit/Loss.

Margin
The margin calculated based on the set price is always zero after the new portfolio margin business is enabled. For
reference on the set price, please consult YDSystemParam.

MarginPerLot The margin per lot calculated based on the previous settlement price.

Field Description

m_pAccountInstrumentInfo Pointer of account instrument info

HoldingPiece[YD_CHT_History] Preday positions, fields refer to YDHoldingPiece structure

HoldingPiece[YD_CHT_TodayTrading] Today buy position, the field refers to the YDHoldingPiece structure

HoldingPiece[YD_CHT_TodayCreationRedemption]
Today's creation and redemption positions, the fields refer to the
YDHoldingPiece structure

TotalHolding Total holdings, the fields refer to the YDHoldingPiece structure

ExternalSellFrozen
External freezes volume, including judicial freezes and stock option
takeover freezes

HoldingAdjustStatus
The external system transfers in and out of the position status. This part
of the position has been actually included in various types of actual
positions

Field and method Description

Holding Position Balance

BuyFrozen Buy freeze volume

SellFrozen Sell frozen volume

TotalCost Buying cost, selling does not affect

BuyFrozenCost Buying frozen cost

double AverageCost(int multiple=1) Average opening price，calculation formula:：TotalCost/Holding

int MaxPossibleHolding() Maximum possible position，calculation formula：Holding+BuyFrozen

int MaxPossibleSellVolume() Maximum possible short position，calculation formula：Holding-SellFrozen

double MaxPossibleCost() Maximum possible cost，calculation formula：TotalCost + BuyFrozenCost

Field Description

TotalTransferInVolume Open volume transferred in from external system

TotalTransferOutVolume Open volume transferred out from external system

TotalTransferInPrice Open cost transferred in from external system

TotalTransferOutPrice Open cost transferred out from external system

5.2 Spot position model  
In spot trading, different trading businesses will generate or use different position types. Currently, YD supports three types of 
positions: history, today's trading, and today's creation and redemption.

The description of the YDHoldingPiece structure is as follows:

The description of the YDHoldingAdjustStatus structure is as follows：

Due to the complexity of calculating the available position during bidding, YD provides getMaxSellVolume in YDExtendedApi to 
obtain the current available sell volume during bidding. 

virtual int getMaxSellVolume(const YDExtendedHolding *pHolding)1

YD Trading System C++ API Programming Guide

45 / 135

af://n2057
af://n2135


Field Description

m_pAccountInstrumentInfo Pointer of the account instrument info.

Position Stock option spot's position

ExchangeFrozenVolume Exchange Frozen Volume for covered call opening

CoveredVolume Covered call position volume

ExecVolume E-day put option exercise freeze amount

ExecAllocatedVolume
Exercise allocated volume，always equal to YDSpotPrePosition's，no change during the
trading

ExecAllocatedAmount
Exercise allocated amount，always equal to YDSpotPrePosition's，no change during the
trading

ExecAllocatedFrozenVolume
Exercise allocated frozen volume，always equal to YDSpotPrePosition's，no change during
the trading

ExecAllocatedFrozenAmount
Exercise allocated frozen amount，always equal to YDSpotPrePosition's，no change during
the trading

5.3 Stock Option Spot Position Model  
Stock option spot positions will only include securities that are the underlying assets of stock options on SSE and SZSE, namely ETFs 
and stocks that will be launched after SSE and SZSE launch individual stock options. Stock option spot positions are only used for 
stock option business, and are used in conjunction with the covered call and exercise business in the stock option business. Even if 
stock options and spot business are deployed on the same counter, for the same securities, stock option spot positions are 
completely independent of spot positions.

The position organizing method of YDExtendedApi is basically the same as the organizing method of the YD OMS, so the following 
will take the position YDExtendedSpotPosition of YDExtendedApi as an example to introduce the relevant concepts of option spot 
positions. The fields related to the position model of YDExtendedSpotPosition are as follows, with the primary keys being investors 
and securities.

Unlike other position models, the daily initial value and intraday real-time value of stock option spot positions are related to the 
adopted business model. YD supports both incremental and full business models. The incremental model is more in line with the 
essence of stock option business and more versatile than the full model. Therefore, YD will migrate the full model to the 
incremental model at the appropriate time. At present, the YD stock option counter deployed by futures companies uses the full 
model, while the securities company uses the incremental model.

The stock option spot position business model refers to the relationship between the positions and amounts between the stock 
option counter at the beginning of the day and during the trading day, the spot counter, the Shanghai and Shenzhen Stock 
Exchange trading system, and the China Securities Depository and Clearing Corporation's settlement system. When different 
business models are adopted, the meaning of fund positions is different, and investors also need to use different API interfaces 
when trading. Stock option spot positions, exercise allocation frozen volume, and exercise allocation frozen amount are related to 
the model, and their calculation methods are explained in the specific model; exchange locked volume, covered volume, exercise 
frozen volume, net exercise allocation volume, and net exercise allocation amount are not related to the model, as explained below:

Covered Volume is calculated based on option covered positions and is always calculated using the exchange contract 
multiplier

Exchange locked volume ExchangeFrozenVolume is usually equal to covered volume at the beginning of the day, but when 
insufficient coverage occurs on the ex-rights and ex-dividend date or the exercise allocation date, the exchange locked volume 
is less than the covered volume. The specific amount is calculated according to the exchange business rules and is related to 
the ordinary spot positions and exercise allocation frozen volume. If the intraday exchange locked volume is less than the 
covered volume, investors need to buy spot in time to prevent the covered position from being liquidated by SSE or converted 
to ordinary option positions by SZSE

ExecVolume is the stock option spot position frozen when investors initiate put option exercise during the exercise day

ExecAllocatedVolume is the total exercise settlement amount based on the difference between the after-hours pairing 
settlement results on the E day. Positive values ​​represent receipts, negative values ​​represent delivery, and the beginning of the 
day and the intraday values ​​are the same and unchanged

ExecAllocatedAmount is the total exercise settlement amount based on the difference between the after-hours pairing 
settlement results on the E day. Positive values ​​represent receipts, negative values ​​represent delivery, and the beginning of the 
day and the intraday values ​​are the same and unchanged

The maximum exercise application, SSE lock, and SZSE covered quantity that investors can initiate during the trading day is the 
available quantity of stock option spot, and its calculation formula is:

.

5.3.1 Stock Option Increment Model  

In the incremental model, the stock option spot position is the amount of ordinary spot positions occupied and frozen by the stock 
option business. This part of the position can only be used for the exercise and covered call business of stock options. When 
investors need more spot positions for the exercise and covered call business of stock options, they need to take over the ordinary 
spot positions to the stock option spot positions. Similarly, when investors want to sell excess stock option spot positions, they need 
to take the initiative to return the stock option spot positions to the ordinary spot positions. The relationship diagram of each 
position is shown below.

YD Trading System C++ API Programming Guide

46 / 135

af://n2135
af://n2184


According to the instructions on freezing spot positions on the exercise settlement day in the "Guidelines for the Pilot Settlement of 
Stock Options of the Shenzhen Branch of China Securities Depository and Clearing Co., Ltd.", China Securities Depository and 
Clearing Co., Ltd. requires that the exercise allocated frozen volume ExecAllocatedFrozenVolume be the sum of the spot positions 
corresponding to the put option positions that are continuously frozen during the E+1 day, the assigned matured covered call 
positions, and the unexpired covered call positions.

According to the "Rules of China Securities Depository and Clearing Co., Ltd. on the Pilot Settlement of Stock Options of Shanghai 
Stock Exchange": Based on the inspection results, the Company assigns the effective exercise and the exercised party according to 
the principles of "proportional allocation" and "allocation according to the size of the tail number", sends the exercise assignment 
results to the settlement participants, and locks the contract subject required for the exercise and delivery in the securities account 
corresponding to the contract account of the put option exerciser. The maintenance margin corresponding to the assigned 
contract of the exercised settlement participant shall not be released. If the settlement participant of the contract subject fails 
to deliver the contract subject, the Company shall make cash settlement for the undelivered part at 110% of the closing price 
of the contract subject on the day.

Although China Securities Depository and Clearing Co., Ltd. has stipulated the calculation method of the exercise allocation frozen 
amount ExecAllocatedFrozenAmount, some securities companies have formulated business rules for the exercise allocation frozen 
amount based on the actual business development situation under the premise of not less than the supervision regulations of 
China Securities Depository and Clearing Co., Ltd., and YD calculates the exercise allocation frozen amount according to the 
business rules of each securities company. Due to the confidentiality requirements of securities companies for their business rules, 
the specific calculation method is not listed here. Investors are requested to consult securities companies for specific calculation 
methods.

According to the definition of this model, the stock option spot position at the beginning of the day should be equal to the position 
that the spot system considers to be initially taken over by the stock option system at the beginning of the day. When the ordinary 
spot position is sufficient, its value should be equal to the sum of the covered position and the exercise allocation frozen amount. 
When the ordinary spot position is not enough to cover the covered position and the exercise allocation frozen spot position, its 
value will be adjusted accordingly according to the rules of the spot system so that it is the same as the position that the spot 
system considers to be initially taken over by the stock option system at the beginning of the day. When investors take over spot 
positions during the trading session, the ordinary spot positions during the trading session will be reduced and the stock option 
spot positions during the trading session will be increased accordingly. The takeover quantity cannot exceed the takeover quantity 
of the spot system. The calculation formula is 

.

5.3.2 Stock Option Full Model  

In the full model, the stock option spot position is a mirror image of the ordinary spot position. The two are kept consistent through 
a two-way synchronization mechanism. The ordinary spot position is synchronized to the stock option spot position at a regular 
interval, and the sum of the exchange lock-up amount, exercise freeze amount and exercise allocation freeze amount of the stock 
option system is synchronized to the spot system. The full model has two problems: regulatory risk and narrow applicability:

Unlock all covered securities locked in the previous trading day

Conduct an exercise validity check (i.e. check the number of exercise contracts in the contract account of 

the exercise declaring party and check whether the number of underlying securities available in the 

securities account of the put option exercising party at the end of the day is sufficient), and lock the 

underlying securities required for the exercise of the put option contract

Assign all valid exercise declarations (including calls and puts)

After the exercise is assigned, cancel the undeclared exercise and unassigned expired contracts

Release the maintenance margin in the fund margin account of the settlement participant corresponding to 

the contract that has not been assigned to exercise

Re-lock the covered securities corresponding to the assigned expired covered open contracts and the 

covered securities corresponding to all unexpired covered open contracts at the end of the day

1

2

3

4

5

6

YD Trading System C++ API Programming Guide

47 / 135

af://n2192


Since the exchange lock-up amount of the stock option system is synchronized to the spot system after the business occurs, 
there is a time difference between the two. During this time difference, the spot position has been occupied in the exchange, 
but the spot system believes that the spot position has not been locked. If the investor sells this part of the position in the spot 
system at this time, the spot system will not be able to effectively intercept the sell order and send it to the exchange, which 
will be rejected by the exchange as a wrong order. This situation will be regarded by the regulator as a loophole in the counter 
money warehouse management

Most spot counters do not support the functions of reading the total position and locking the absolute number, which limits 
the full model from being used in most scenarios

The formula for the ExecAllocatedFrozenVolume is:

ExecAllocatedFrozenVolume is defined in accordance with the business rules of futures companies, and its calculation formula is:

The definitions of each item in the above formula are as follows:

Net exercise settlement amount is the original settlement amount calculated based on the after-hours matching settlement 
results on E day. Positive values ​​represent receipt of money, and negative values ​​represent delivery of money

Net difference bond default penalty is the funds frozen in advance to prevent bond default. Negative values ​​represent the need 
to freeze the default penalty. 0 means no default penalty, and it cannot be a positive value. In the pairing settlement results 
after the E-day trading, 

, then 

, where the first 10% is the regulatory requirement, and the second 10% cannot determine which contract is in default, so it can 
only be frozen according to the upper limit

Net maintenance margin is the funds frozen by the option contract in accordance with regulatory requirements during the E+1 
day trading. Negative values ​​mean that the margin needs to be frozen, 0 means no margin, and it cannot be a positive value

YD provides a spot counter connector to achieve real-time two-way position synchronization during the trading session. If the 
broker enables the spot counter connector, the API will notify the spot position synchronization through the following callback 
function that it is activated. The notification message is sent continuously. If no notification is received within 30 seconds, it means 
that the synchronization mechanism is interrupted. Please contact the broker in time to troubleshoot the problem.

In the synchronous activation state, if the position on the spot counter changes, ydApi and ydExtendedApi will be notified through 
the following callbacks, and newPosition is the updated spot position：

If investors use YDExtendedListener, then notifyExtendedSpotPosition will be called back at any time when notifySpotPosition is 
called back：

If the synchronization mechanism is not configured or fails during the trading session, the YD stock options counter will skip 
checking the spot positions of locked positions, covered call openings, and put option exercises, which may cause the following 
problems:

If the actual lockable positions are insufficient when locking positions

If the actual available spot positions are insufficient when covered call openings, the exchange will return an opening error

If the actual available spot positions are insufficient when exercising put options, the Exchange will not check the spot 
positions and will accept the exercise instructions, which will cause investors to mistakenly believe that the spot positions 
are sufficient. However, the exercise instructions will fail during settlement, causing investors to suffer losses.

5.4 Position query  
This section mainly introduces the method for querying real-time positions through ydExtendedApi. All queries are made based on 
the local data of ydExtendedApi and will not be conducted at the OMSs. Since all query services are locked, there will be a certain 
loss in performance. All query methods must be called after notifyCaughtUp, otherwise the position data will be inaccurate due to 
incomplete order trading data. To query preday-positions, see Preday-Position and traditional-combined-preday-position.

virtual void notifySpotAlive(const YDExchange *pExchange)1

virtual void notifySpotPosition(const YDInstrument *pInstrument,const YDAccount *pAccount,int newPosition)1

virtual void notifyExtendedSpotPosition(const YDExtendedSpotPosition *pSpotPosition)1

YD Trading System C++ API Programming Guide

48 / 135

af://n2227


Parameter Description

positionDate

Date of position to be queried
YD_PSD_History: Pre position
YD_PSD_Today: Today's position
If the exchange does not make a distinction between today's positions and pre positions, the
YD_PSD_History should be used

positionDirection
Position direction to be queried
YD_PD_Long: Long position
YD_PD_Short: Short position

hedgeFlag

Position hedge flag to be queried, the definition of hedge flags is different for futures exchanges and
stock option exchanges.
The definition of hedge flag for futures exchanges is as follows:
YD_HF_Speculation=1: Speculation
YD_HF_Arbitrage=2: Arbitrage, only supported by CFFEX. In order to facilitate the coding, YD provides a
parameterized representation to determine whether to support arbitrage trading and positions. When
the value of YDExchange.UseArbitragePosition is "True", it means that the exchange supports arbitrage
trading and positions, otherwise it does not support.
YD_HF_Hedge=3: hedge
The definition of hedge flag for stock option exchanges is as follows:
YD_HF_Normal=1: Normal
YD_HF_Covered=3: covered

pInstrument Instrument pointer to be queried

pAccount When NULL is filled in, it means that the current API login account is used

create
For determining whether to create an empty position when no position is found.
If "True", when no position is found, a newly initialized position of 0 will be sent back. If "False", a NULL
will be sent back when no position is found

Field Description

PositionDate
The date of the position to be queried. Setting it to -1 means that this parameter is not effective.
YD_PSD_History：Yesterday's position
YD_PSD_Today：Today's position

5.4.1 Derivatives position query  

A single futures and options position can be queried by calling "getExtendedPosition". For the notified YDExtendedPosition 
structure, please refer to Position Structure.

The parameters for calling the above method are as follows:

YD provides following two different methods for multi-position query, which have the same query parameters:

The first method requires investors to allocate a fixed-length YDExtendedPosition pointer array in advance. If the pre-allocated 
length is not enough to accommodate, only the positions of the pre-allocated array length will be filled. Regardless of whether the 
pre-allocated length is sufficient, the return value of this method is the total number of positions that meet the query conditions. 
Investors can use this feature to call findExtendedPositions(pFilter, 0, NULL) to quickly obtain the total number of positions that 
meet the conditions.

The advantage of this method is that when there are not many positions and the pre-allocated array length is sufficient, the 
pre-allocated pointer array can be reused without allocating it for each query

The disadvantage of this method is that if there are many positions, it may take two calls (the first to obtain the total number of 
positions, the second to allocate an array that can accommodate all positions and then call again) to fully obtain all positions 
that meet the conditions

The second method can help investors allocate space that can accommodate all positions that meet the conditions, but investors 
need to actively call YDQueryResult.destroy() to destroy the allocated space after use. Delete cannot be used to delete. Compared 
with the first method:

The advantage of this method is that all positions are returned after one call

The disadvantage of this method is that investors need to actively release the space allocated by this method, and new space 
will be allocated for each call. Frequent allocation and release is very unfriendly to the cache

The instructions for filling in each field of parameter YDExtendedPositionFilter are as follows:：

virtual const YDExtendedPosition *getExtendedPosition(int positionDate,int positionDirection,int 

hedgeFlag,const YDInstrument *pInstrument,const YDAccount *pAccount=NULL,bool create=false);

1

/// positions must have spaces of count, return real number of positions(may be greater than count). Only 

partial will be set if no enough space

virtual unsigned findExtendedPositions(const YDExtendedPositionFilter *pFilter,unsigned count,const 

YDExtendedPosition *positions[]);

/// User should call destroy method of return object to free memory after using following method

virtual YDQueryResult<YDExtendedPosition> *findExtendedPositions(const YDExtendedPositionFilter *pFilter);

1

2

3

4

5

YD Trading System C++ API Programming Guide

49 / 135

af://n2229


Field Description

PositionDirection
Position direction. Setting it to -1 means that this parameter is not effective.
YD_PD_Long：Long position
YD_PD_Short：Short position

HedgeFlag

Hedge flag of the position to be queried. It has different definitions between futures exchanges and stock
options exchanges. Setting it to -1 means that this parameter is not effective.
YD_PD_Long：Long position
YD_PD_Short：Short position
For future exchanges：
YD_HF_Speculation=1：Speculation
YD_HF_Arbitrage=2：Arbitrage, only available for CFFEX。To facilitate programming, YDExchange
provides a parameterized representation of whether arbitrage trading and positions are supported.
When YDExchange.UseArbitragePosition is true, it means that the exchange supports arbitrage trading
and positions; otherwise, it does not support.
YD_HF_Hedge=3：Hedge
For stock exchanges：
YD_HF_Normal=1：normal
YD_HF_Covered=3：covered

pInstrument Instrument pointer. Set to NULL for no limit.

pProduct Product pointer，Set to NULL for no limit.

pExchange Exchange pointer，Set to NULL for no limit.

pAccount Investor should always set to NULL

Field Description

PositionDate
Date of position to be queried, when set to 0, it means that this parameter is invalid.
YD_PSD_History: pre position
YD_PSD_Today: today's position

PositionDirection
Position direction to be queried, when set to 0, it means that this parameter is invalid
YD_PD_Long: Long position
YD_PD_Short: Short position

HedgeFlag

Position hedge flag to be queried, the definition of hedge flags is different for futures exchanges and
stock option exchanges. When set to 0, it means that this parameter is invalid
The definition of hedge flag for futures exchanges is as follows:
YD_HF_Speculation=1: Speculation
YD_HF_Arbitrage=2: Arbitrage, only supported by CFFEX. In order to facilitate the coding, YD provides a
parameterized representation to determine whether to support arbitrage trading and positions. When
the value of "YDExchange.UseArbitragePosition" is "True", it means that the exchange supports arbitrage
trading and positions, otherwise it does not support.
YD_HF_Hedge=3: hedge
The definition of hedge flag for stock option exchanges is as follows:
YD_HF_Normal=1: Normal
YD_HF_Covered=3: covered

The pseudo-code logic for determining whether a position meets the query criteria is as follows:

The description of each field of the parameter YDExtendedPositionFilter is as follows:

if YDExtendedPositionFilter.PositionDate>=0 and 

YDExtendedPosition.PositionDate!=YDExtendedPositionFilter.PositionDate:

    return false;

if YDExtendedPositionFilter.PositionDirection>=0 and 

YDExtendedPosition.PositionDirection!=YDExtendedPositionFilter.PositionDirection:

    return false;

if YDExtendedPositionFilter.HedgeFlag>=0 and 

YDExtendedPosition.HedgeFlag!=YDExtendedPositionFilter.HedgeFlag:

    return false;

if YDExtendedPositionFilter.pInstrument!=NULL and 

YDExtendedPosition.Instrument!=YDExtendedPositionFilter.pInstrument:

    return false;

if YDExtendedPositionFilter.pProduct!=NULL and 

YDExtendedPosition.Product!=YDExtendedPositionFilter.pProduct:

    return false;

if YDExtendedPositionFilter.pExchange!=NULL and 

YDExtendedPosition.Exchange!=YDExtendedPositionFilter.pExchange:

    return false;

return true;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

YD Trading System C++ API Programming Guide

50 / 135



Field Description

pInstrument Instrument pointer, when set to NULL, it means that no limit will be made

pProduct Product pointer, when set to NULL, it means that no limit will be made

pExchange Exchange pointer, when set to NULL, it means that no limit will be made

pAccount The "Investor" should always be set to NULL

Parameter Description

pInstrument Instrument pointer to be queried

pAccount When NULL is filled in, it means that the current API login account is used

create
For determining whether to create an empty position when no position is found.
If "True", when no position is found, a newly initialized position of 0 will be sent back. If "False", a NULL will be
sent back when no position is found

Field Description

pInstrument Instrument pointer. If set to NULL, no limit.

pProduct Product pointer. If set to NULL, no limit.

pExchange Exchange pointer. If set to NULL, no limit.

pAccount Investors please always set to NULL.

The first method requires investors to allocate a fixed-length "YDExtendedPosition" pointer array in advance. If the pre-allocated 
length is not enough for the space, only the positions with the pre-allocated array length can be filled. Whether the pre-allocated 
length is enough or not for the space, the return values regarding this method are the total positions meeting the query criteria. 
Investors, relying on this, can call "findExtendedPositions(pFilter, 0, NULL)" to quickly obtain the total positions meeting the criteria.

The advantage of this method is that when there are not many positions and the length of the pre-allocated array is enough, 
the pre-allocated pointer array can be reused without allocating for each query;

The disadvantage of this method is that if there are many positions, it may need to be called twice (the first time aims to obtain 
the total positions, the second time, to allocate the array that can include all positions before calling again) to fully obtain all 
positions meeting the criteria.

The second method can help investors allocate a space for all positions meeting the criteria. However, the allocated space, after 
being used, should be destroyed actively by calling "YDQueryResult.destory()" since it is not suitable for being deleted by "Delete". 
Compared with the first method:

The advantage of this method is that all positions can be notified by one call

The disadvantage of this method is that the investors need to actively release the space allocated according to this method, 
and each call will lead to the allocation of a new space, however, frequent allocation and release are very unfriendly to the 
cache.

5.4.2 Spot position query  

To obtain the spot position of a single stock option, you can call the getExtendedSpotPosition method. For the returned 
YDExtendedPosition structure and meaning, please refer toStock Option Spot position model.

The parameters for calling the above method are described as follows:

YD provides a method for multi-position query. The method can help investors allocate a space for all positions meeting the criteria. 
However, the allocated space, after being used, should be destroyed actively by calling "YDQueryResult.destory()".

The instructions for filling in each field of the parameter YDExtendedSpotPositionFilter are as follows:

The pseudo-code logic for determining whether a position meets the query criteria is as follows:

virtual const YDExtendedSpotPosition *getExtendedSpotPosition(const YDInstrument *pInstrument,const 

YDAccount *pAccount=NULL,bool create=false)

1

/// User should call destroy method of return object to free memory after using following method

virtual YDQueryResult<YDExtendedSpotPosition> *findExtendedSpotPositions(const 

YDExtendedSpotPositionFilter *pFilter)

1

2

YD Trading System C++ API Programming Guide

51 / 135

af://n2335


Field Description

m_pAccount Pointer of investors' traditional combined position details

m_pCombPositionDef Pointer of traditional combined position definition

Position Detailed traditional combined positions

CombPositionDetailID Traditional combined position details ID, valid only in SSE and SZSE

5.4.3 Traditional combined position details query  

YD provides the following method for querying the combined position details of SSE and SZSE. The "combPositionDetailID" is the 
only primary key for determining combined details:

Note

YD API does not provide method to query traditional combined position, investors should maintain their data based on 
Traditional Combined Preday Position.

The fields of the notified "YDExtendedCombPositionDetail" structure are as follows:

YD provides the above two different methods for multi-query of traditional combined position details, which have the same query 
parameters:

The pseudo-code logic for determining whether traditional combined position details meet the query criteria is as follows. For 
readability, YDExtendedCombPositionDetail is abbreviated as Detail, and YDCombPositionDetailFilter is abbreviated as Filter:

if YDExtendedSpotPositionFilter.pInstrument!=NULL and 

YDExtendedSpotPosition.Instrument!=YDExtendedSpotPositionFilter.pInstrument:

    return false;

if YDExtendedSpotPositionFilter.pProduct!=NULL and 

YDExtendedSpotPosition.Product!=YDExtendedSpotPositionFilter.pProduct:

    return false;

if YDExtendedSpotPositionFilter.pExchange!=NULL and 

YDExtendedSpotPosition.Exchange!=YDExtendedSpotPositionFilter.pExchange:

    return false;

return true;

1

2

3

4

5

6

7

8

9

10

/// getCombPositionDetail can only be used in SSE/SZSE

virtual const YDExtendedCombPositionDetail *getCombPositionDetail(int combPositionDetailID);

1

2

/// combPositionDetails must have spaces of count, return real number of combPositionDetails(may be 

greater than count). Only partial will be set if no enough space

virtual unsigned findCombPositionDetails(const YDCombPositionDetailFilter *pFilter,unsigned count,const 

YDExtendedCombPositionDetail *combPositionDetails[]);

/// User should call destroy method of return object to free memory after using following method

virtual YDQueryResult<YDExtendedCombPositionDetail> *findCombPositionDetails(const 

YDCombPositionDetailFilter *pFilter);

1

2

3

4

5

if Filter.IncludeSplit==false and Detail.Position<=0:

    return false

if Filter.pAccount!=NULL and Detail.m_pAccount!=Filter.pAccount:

    return false

if Filter.pCombPositionDef!=NULL and Detail.m_pCombPositionDef!=Filter.pCombPositionDef:

    return false

if Filter.pInstrument!=NULL:

    hasMatchLeg=false

    for (int legID=0;legID<2;legID++):

        if matchLeg(Detail->m_pCombPositionDef,legID,Filter):

            hasMatchLeg=true

            break

    if hasMatchLeg==false:

        return false

return true

bool matchLeg(YDCombPositionDef Def,int legID,YDCombPositionDetailFilter Filter):

    if Def.m_pInstrument[legID]!=Filter.pInstrument:

        return false

    if Filter.PositionDirection!=0 and Filter.PositionDirection!=Def.PositionDirection[legID]:

        return false

    return true

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

YD Trading System C++ API Programming Guide

52 / 135

af://n2373


Field Description

pCombPositionDef
Pointer of traditional combined position definition. When set to NULL, it means that no limit will be
made.

pInstrument Pointer of instrument. When set to NULL, it means that no limit will be made.

PositionDirection

Position direction of traditional combined position details to be queried, when set to 0, it means that
this parameter is invalid.
YD_PD_Long: Long position
YD_PD_Short: Short position

IncludeSplit For determining whether to include traditional combined position details that have been decombined.

Each field of the parameter YDExtendedPositionFilter to be filled out is described as follows:

The first method requires investors to allocate a fixed-length "YDExtendedCombPositionDetail" pointer array in advance. If the pre-
allocated length is not enough for the space, only the traditional combined position details with the pre-allocated array length can 
be filled. Whether the pre-allocated length is enough or not for the space, the return values regarding this method are the total 
traditional combined position details meeting the query criteria. Investors, relying on this, can call "findCombPositionDetails(pFilter, 
0, NULL)" to quickly obtain the total traditional combined position details meeting the criteria.

The advantage of this method is that when there are not many traditional combined position details and the length of the pre-
allocated array is enough, the pre-allocated pointer array can be reused without allocating for each query;

The disadvantage of this method is that if there are many traditional combined position details, it may need to be called twice 
(the first time aims to obtain the total traditional combined position details, the second time, to allocate the array that can 
include all traditional combined position details before calling again) to fully obtain all traditional combined position details 
meeting the criteria.

The second method can help investors allocate a space for all traditional combined position details meeting the criteria. However, 
the allocated space, after being used, should be destroyed actively by calling "YDQueryResult.destory()" since it is not suitable for 
being deleted by "Delete". Compared with the first method:

The advantage of this method is that all traditional combined position details can be notified by one call

The disadvantage of this method is that the investors need to actively release the space allocated according to this method, 
and each call will lead to the allocation of a new space, however, frequent allocation and release are very unfriendly to the 
cache.

YD Trading System C++ API Programming Guide

53 / 135



Field Description

m_pAccount Pointer of investors' margin rate

m_pProduct Product margin rate pointer

m_pInstrument Pointer of instrument corresponding to margin rate

HedgeFlag

YD_HF_Speculation=1: Speculation
YD_HF_Arbitrage=2: Arbitrage, only supported by CFFEX. In order to facilitate the coding, YD
provides a parameterized representation to determine whether to support arbitrage trading
and positions. When the value of "YDExchange.UseArbitragePosition" is "True", it means that
the exchange supports arbitrage trading and positions, otherwise it does not support.
YD_HF_Hedge=3: hedge

LongMarginRatioByMoney Long margin rate based on amount

LongMarginRatioByVolume Long margin rate based on lots

ShortMarginRatioByMoney Short margin rate based on amount

ShortMarginRatioByVolume Short margin rate based on lots

6 Margin model  
Starting from 2023, various exchanges have already or are about to introduce new portfolio margin models. In order to 
differentiate, YD refers to the previous margin model as the traditional margin model. After analyzing the solutions provided by 
various exchanges, it has been determined that for a considerable period, both the traditional margin and portfolio margin will 
coexist. This means that for the same investor, there may be some products that use the traditional margin model while others use 
the portfolio margin model. As a result, YD has established the concept of margin models and applies them at the investor and 
product level. This means that products using the same margin model can participate together in margin benefits such as hedging 
and portfolio optimization.

Currently, YD supports the following margin models:

YD_MM_Normal=0：Traditional Margin Model

YD_MM_SPBM=1：CZCE SPBM Portfolio Margin Model

YD_MM_RULE=2：DCE RULE Portfolio Margin Model

For investors using the ydApi, YD does not provide a method to determine which trading model a specific product or instrument 
belongs to. Investors need to parse this information from the Combination margin parameters. For investors using the 
ydExtendedApi, the following method can be used to obtain the margin model to which a specific instrument or product belongs.

6.1 Traditional margin model  
The margin collection and deduction principle of YD Futures Exchange is to keep consistent with that of the mainstream 
primary OMS as much as possible. It should be noted that YD and the mainstream primary OMS can help to calculate the large-side 
margin together with the pending orders and positions of SSE, INE and CFFEX, however at present, the following two points are 
inconsistent with those of the mainstream primary OMS in terms of business rules:

For the combined option margin of DCE, the calculation methods of YD and mainstream primary OMS are different;

For locked orders of CZCE, considering the positions and pending orders, YD deducts the margin according to the large-side 
margin calculation method. At present, for the mainstream primary OMS, only the large-side margin deduction of positions 
rather than that of pending orders can be calculated.

Therefore, except for the above two business cases, the margin authorization of YD and the mainstream primary OMS should be 
completely consistent when exchanges are closed, however, it may vary slightly during trading considering different notification 
sequences, market data update time and OMS recalcualtion time.

YD does not make a distinction between the frozen order margin and the position margin but considers it as a margin as a whole. A 
large-side margin is also calculated according to the sum of the order margin and position margin. For the sake of investors' easy 
understanding, this text makes a distinction between the order margin and position margin though they are not distinct by OMSs.

6.1.1 Margin rate  

To calculate the position margin, the margin rate of the instrument about the corresponding hedge flag should be obtained first. It 
is suggested that investors directly use "getInstrumentMarginRate" to obtain the corresponding margin rate instead of reading it 
directly from "YDAccountInstrumentInfo".

The notified YDMarginRate structure has a large number of "union" fields for adapting to different margin models. For the sake of 
easy understanding, margin rate parameters under three different margin models are listed below.

The following fields are apply to futures margins of futures exchanges.

The following fields are apply to the commodity option margins of futures exchanges and the stock index option margin of CFFEX.

virtual int getMarginModel(const YDInstrument *pInstrument,const YDAccount *pAccount=NULL)

virtual int getMarginModel(const YDProduct *pProduct,const YDAccount *pAccount=NULL)

1

2

virtual const YDMarginRate *getInstrumentMarginRate(const YDInstrument *pInstrument,int hedgeFlag,const 

YDAccount *pAccount=NULL)

1

YD Trading System C++ API Programming Guide

54 / 135

af://n2429
af://n2441
af://n2450


Field Description

m_pAccount Pointer of investors' margin rate

m_pProduct Product margin rate pointer

m_pInstrument Pointer of instrument corresponding to margin rate

HedgeFlag

YD_HF_Speculation=1: Speculation
YD_HF_Arbitrage=2: Arbitrage, only supported by CFFEX. In order to facilitate the coding, YD
provides a parameterized representation to determine whether to support arbitrage trading and
positions. When the value of YDExchange.UseArbitragePosition is "True", it means that the
exchange supports arbitrage trading and positions, otherwise it does not support.
YD_HF_Hedge=3: hedge

CallMarginRatioByMoney Short margin rate of call option based on amount

CallMarginRatioByVolume Short margin rate of call option based on lots

PutMarginRatioByMoney Short margin rate of put option based on amount

PutMarginRatioByVolume Short margin rate of put option based on lots

Field Description

m_pAccount Pointer of investors' margin rate

m_pProduct Product margin rate pointer

m_pInstrument Pointer of instrument corresponding to margin rate

HedgeFlag
YD_HF_Normal=1: Normal
YD_HF_Covered=3: Covered

BaseMarginRate Margin rate of base instrument

LinearFactor Linear factor

LowerBoundaryCoef Minimum boundary coefficient

The following fields are apply to the stock option margins of SSE and SZSE.

6.1.2 Futures margin  

The calculation formula for long futures position margin is:

The calculation formula for short futures position margin is:

For orders, the order volume is used for calculating the futures order margin. The price is controlled when the parameter value 
(Name, Target) of YDSystemParam is (OrderMarginBasePrice, Futures). The following shows how to handle different parameter 
values by the system:

YD_CBT_PreSettlementPrice: Pre settlement price

YD_CBT_OrderPrice: When the order is a market price one, the upper limit price shall prevail; When the order is a price-limited 
one/FAK/FOK, the order price shall prevail. It is a default configuration mode and the current mode used by the mainstream 
OMS

YD_CBT_SamePrice: The same price used as that for the margin rate of futures positions, namely the parameter value obtained 
when (Name, Target) of YDSystemParam is (MarginBasePrice, Futures) is used. When the used margin rate of futures positions 
is subject to YD_CBT_OpenPrice at this time, the price used for futures order margin will be a pre settlement one

For pre positions, the position volume is used for calculating the futures position margin, and the pre settlement price is always 
used. The pre positions here refer to the remaining positions after settlements made based on the mark-to-market rules, rather 
than the concept of today's position / pre position of Derivative Position Model.

For today's positions, the position volume is used for calculating the futures position margin. The price is controlled when the 
parameter value (Name, Target) of YDSystemParam is (MarginBasePrice, Futures). The following shows how to handle different 
parameter values by the system:

YD_CBT_PreSettlementPrice: Pre settlement price

YD_CBT_OpenPrice: Open price, The margins corresponding to the position details is calculated one by one according to the 
open price. It is a default configuration mode and the current mode used by the mainstream OMS

YD_CBT_LastPrice: Latest price

YD_CBT_MarketAveragePrice: Average market price 

YD_CBT_MaxLastPreSettlementPrice: The higher one between the latest price and pre settlement price. When the trading 
volume of the instrument is zero for the day, the previous settlement price is used.

YD Trading System C++ API Programming Guide

55 / 135

af://n2538


6.1.3 Option margin  

6.1.3.1 Commodity option margin  

For commodity options traded in SHFE, INE, DCE, GFEX and CZCE.

The margin calculation formulas for call commodity options are as follows. OTM in the following formulas stands for out of the 
money.

The margin calculation formulas for put commodity options are:

For orders, the order volume is used for calculating the futures order margin. The price is controlled when the parameter value 
(Name, Target) of YDSystemParam is (OrderMarginBasePrice, Options). The following shows how to handle different parameter 
values by the system:

YD_CBT_PreSettlementPrice: Pre settlement price. It is a default configuration mode and the current mode used by the 
mainstream OMS

YD_CBT_OrderPrice: When the order is a market price one, the upper limit price shall prevail; When the order is a price-limited 
one/FAK/FOK, the order price shall prevail. 

YD_CBT_SamePrice: The same price used as that for the margin rate of futures positions, namely the parameter value obtained 
when (Name, Target) of YDSystemParam is (MarginBasePrice, Options) is used. When the used margin rate of futures positions 
is subject to YD_CBT_OpenPrice at this time, the price used for futures order margin will be a pre settlement one

For pre positions and today's positions, the position volume is used for calculating the futures position margin. The option price is 
controlled when the parameter value (Name, Target) of YDSystemParam is (MarginBasePrice, Options). The following shows how to 
handle different parameter values by the system:

YD_CBT_PreSettlementPrice: Pre settlement price

YD_CBT_OpenPrice: The margins corresponding to the position details is calculated one by one according to the open price. 

YD_CBT_LastPrice: Latest price

YD_CBT_MarketAveragePrice: Average market price

YD_CBT_MaxLastPreSettlementPrice: The higher one between the latest price and pre settlement price. It is a default 
configuration mode and the current mode used by the mainstream OMS

For orders, pre positions and today's positions, the underlying instrument price is controlled when the parameter value (Name, 
Target) of YDSystemParam is (MarginBasePriceAsUnderlying, Options). The following shows how to handle different parameter 
values by the system:

YD_CBT_PreSettlementPrice: Pre settlement price. It is a default configuration mode and the current mode used by the 
mainstream OMS

YD_CBT_LastPrice: Latest price

YD_CBT_MaxLastPreSettlementPrice: The higher one between the latest price and pre settlement price. When the trading 
volume of the contract is zero for the day, the previous settlement price is used.

6.1.3.2 Stock index option margin  

For stock index options traded in CFFEX.

The margin calculation formulas for call stock index options are:

The margin calculation formulas for put stock index options are:

YD Trading System C++ API Programming Guide

56 / 135

af://n2564
af://n2565
af://n2603


The minimum boundary coefficient is obtained when the parameter value (Name, Target) of YDSystemParam is 
(MarginLowerBoundaryCoef, MarginCalcMethod1). At present, the minimum boundary coefficient of stock index options should be 
0.5.

For orders, the order volume is used for calculating the option order margin. The option price is controlled when the parameter 
value (Name, Target) of YDSystemParam is (OrderMarginBasePrice, Options). The following shows how to handle different 
parameter values by the system:

YD_CBT_PreSettlementPrice: Pre settlement price. It is a default configuration mode and the current mode used by the 
mainstream OMS

YD_CBT_OrderPrice: When the order is a market price one, the upper limit price shall prevail; When the order is a price-limited 
one/FAK/FOK, the order price shall prevail.

YD_CBT_SamePrice: The same price used as that for the margin rate of option positions, namely the parameter value obtained 
when (Name, Target) of YDSystemParam is (MarginBasePrice, Options) is used. When the used margin rate of option positions 
is subject to YD_CBT_OpenPrice at this time, the price used for option order margin will be a pre settlement one

For pre positions and today's positions, the position volume is used for calculating the option position margin. The option price is 
controlled when the parameter value (Name, Target) of YDSystemParam is (MarginBasePrice, Options). The following shows how to 
handle different parameter values by the system:

YD_CBT_PreSettlementPrice: Pre settlement price. 

YD_CBT_OpenPrice: Open price. The margins corresponding to the position details is calculated one by one according to the 
open price. 

YD_CBT_LastPrice: Latest price

YD_CBT_MarketAveragePrice: Average market price

YD_CBT_MaxLastPreSettlementPrice: The higher one between the latest price and pre settlement price. When the instrument's 
trading volume is zero for the day, the previous settlement price is used. It is a default configuration mode and the current 
mode used by the mainstream OMS

For orders, pre positions and today's positions, the position volume is used for calculating the option position margin. The option 
price is controlled when the parameter value (Name, Target) of YDSystemParam is (MarginBasePrice, Options). The following shows 
how to handle different parameter values by the system:

YD_CBT_PreSettlementPrice：Previous Settlement Price. It is a default configuration mode and the current mode used by the 
mainstream OMS.

YD_CBT_LastPrice：Latest price

YD_CBT_MaxLastPreSettlementPrice：The higher one between the latest price and pre settlement price. When the trading 
volume of the instrument is zero for the day, the previous settlement price is used.

6.1.3.3 Stock option margin  

In production, the margin models of stock options can be divided into linear and nonlinear ones. YD OMSs can help to realize these 
two margin models simultaneously by controlling the parameters of the calculation formula. For example, when the linear 
coefficient is 1.2 and other parameters are standard values of exchanges (at present, the margin rate of underlying instruments is 
12%, and the minimum boundary coefficient is 7%), the linear model should be used; When the margin rate of underlying 
instruments is 15%, the minimum boundary coefficient is 8%, and the linear coefficient is 1, the non-linear model should be used.

The margin calculation formulas for call stock options are:

The margin calculation formulas for put stock options are:

For orders, the order volume is used for calculating the option order margin. The option price is controlled when the parameter 
value (Name, Target) of YDSystemParam is (OrderMarginBasePrice, Options). The following shows how to handle different 
parameter values by the system:

YD_CBT_PreSettlementPrice: Pre settlement price. It is a default configuration mode and the current mode used by the 
mainstream OMS

YD_CBT_OrderPrice: When the order is a market price one, the upper limit price shall prevail; When the order is a price-limited 
one/FAK/FOK, the order price shall prevail.

YD_CBT_SamePrice: The same price used as that for the margin rate of option positions, namely the parameter value obtained 
when (Name, Target) of YDSystemParam is (MarginBasePrice, Options) is used. When the used margin rate of option positions 
is subject to YD_CBT_OpenPrice at this time, the price used for option order margin will be a pre settlement one

For pre positions and today's positions, the position volume is used for calculating the option position margin. The option price is 
controlled when the parameter value (Name, Target) of YDSystemParam is (MarginBasePrice, Options). The following shows how to 
handle different parameter values by the system:

YD_CBT_PreSettlementPrice: Pre settlement price. 

YD Trading System C++ API Programming Guide

57 / 135

af://n2643


YD_CBT_OpenPrice: Open price. The margins corresponding to the position details is calculated one by one according to the 
open price.

YD_CBT_LastPrice: Latest price

YD_CBT_MarketAveragePrice: Average market price

YD_CBT_MaxLastPreSettlementPrice: The higher one between the latest price and pre settlement price. It is a default 
configuration mode and the current mode used by the mainstream OMS

For orders, pre positions and today's positions, the underlying instrument price is controlled when the parameter value (Name, 
Target) of YDSystemParam is (MarginBasePriceAsUnderlying, Options). The following shows how to handle different parameter 
values by the system:

YD_CBT_PreSettlementPrice: Pre settlement price. It is a default configuration mode and the current mode used by the 
mainstream OMS

YD_CBT_LastPrice: Latest price

YD_CBT_MaxLastPreSettlementPrice: The higher one between the latest price and pre settlement price.

6.1.4 Option exercise margin  

6.1.4.1 Commodity option exercise margin  

The calculation formula for call option margin of commodity options is:

The calculation formula for put option margin of commodity options is:

The underlying multiplier is the UnderlyingMultiply of option instruments.

6.1.4.2 Stock option exercise margin  

The calculation formula for exercise margin of call stock options is:

No margin is required for the exercise of put stock options.

6.1.5 Margin deduction  

The main deduction margins of exchanges are divided into one-way large-side margins and combined margins. Although their final 
effects are similar, their usages and complexities are different. The two deduction methods should be distinguished properly. At 
present, CFFEX, SHFE, INE and CZCE support the large-side margin service, while DCE, CZCE, SSE and SZSE support the combined 
margin service.

6.1.5.1 One-way large-side margin  

CZCE supports one-way large-side margin under the same instrument, which is dependent on the sum of long/short 
speculation, hedging position and order margins under the same instrument, the margin which is relatively higher will be 
considered as the actual margin of this instrument to be collected.

SHFE and INE support one-way large-side margin under the same product, which is dependent on the sum of long/short 
speculation, hedging position and order margins under the same product, the margin which is relatively higher will be considered as 
the actual margin of this product to be collected.

CFFEX supports cross-product one-way large-side margin, which is dependent on the sum of long/short speculation, hedging 
position and order margins under the same product group, the margin which is relatively higher will be considered as the actual 
margin of this product group to be collected. Product groups are defined through "YDProduct.m_pMarginProduct", this field points 
to the leader product of a product group (the leader product is not fixed and may vary with the initialization data), the leader 
product and all m_pMarginProduct pointing to the leader product belong to the same product group. At present, CFFEX has two 
product groups. All stock index futures IF, IC, IH and IM belong to one product group, and all T-bond futures TF, TS and T belong to 
the other product group.

In order to make it easy for the strategy program to identify instruments that need to be involved in the calculation of one-way 
large-side margins, when "YDInstrument.SingleSideMargin" is "True", it means that an instrument should be involved in the 
calculation of a one-way large-side margin, otherwise it will not be involved. Generally, the SingleSideMargin of futures instruments 
of SHFE, INE and CFFEX are "True", but because the futures instruments that are close to delivery should not be involved in the 
calculation of one-way large-side margins, they should be set as "False" ones through the SingleSideMargin. The settings of this part 
are made based on the preday data from the mainstream OMS.

6.1.5.2 Traditional combined margin  

YD has developed different combined margin deduction methods for different combination types of exchanges, which are 
introduced one by one below.

YD Trading System C++ API Programming Guide

58 / 135

af://n2679
af://n2680
af://n2686
af://n2690
af://n2692
af://n2697


6.1.5.2.1 Futures combination  

The following combination types apply to this deduction algorithm:

YD_CPT_DCE_FuturesOffset: Futures offset of DCE

YD_CPT_DCE_FuturesCalendarSpread: Futures calendar spread of DCE

YD_CPT_DCE_FuturesProductSpread: Futures cross-product spread of DCE

YD_CPT_GFEX_FuturesOffset: Futures offset of GFEX

YD_CPT_GFEX_FuturesCalendarSpread: Futures calendar spread of GFEX

YD_CPT_GFEX_FuturesProductSpread: Futures cross-product spread of GFEX

YD_CPT_CZCE_Spread: Spread of CZCE

A combined futures margin can be obtained by selecting a small side according to the rules first, making the selected small side 
position margin be a savings margin and then subtracting the savings margin from the sum of the original two-leg margins. The 
selection rules for small sides are:

Compare the two-leg futures margins of exchanges and select the smaller side. If they are the same, go to the next step. The 
calculation formula for exchange futures margins is the same as that for Futures Margin. The pre settlement price and 
exchange margin rate are used for the calculation. The exchange margin rate can be obtained through 
"YDInstrument.m_pExchangeMarginRate".

If combination type is YD_CPT_CZCE_Spread, select the right leg directly, otherwise go to the next step

Compare the delivery months in relation to the two legs. The farther month side should be selected. If they are the same, go to 
the next step

Compare the two-leg instrument codes. The longer instrument code should be selected. An instrument code comparison 
means a string comparison

6.1.5.2.2 Option straddle  

The following combination types apply to this deduction algorithm:

YD_CPT_DCE_OptionsStraddle: Put option straddle of DCE

YD_CPT_DCE_OptionsStrangle: Put option strangle of DCE

YD_CPT_GFEX_OptionsStraddle: Put option straddle of GFEX

YD_CPT_GFEX_OptionsStrangle: Put option strangle of GFEX

YD_CPT_CZCE_StraddleStrangle：Put option straddle or strangle of CZCE

The above mentioned combined option margin can be obtained by selecting a small side according to the rules first, calculating the 
savings margin through the selected small side and then subtracting the savings margin from the sum of the original two-leg 
margins. The calculation formula for saving margins is: . The calculation formula of 
the exchange option margin is the same as that of Option Margin. the pre settlement price and exchange margin rate should be 
used for the calculation. The exchange margin rate can be obtained through "YDInstrument.m_pExchangeMarginRate". The small 
side selection rules are:

Compare the two-leg option margins and select the smaller side. If they are the same, go to the next step; 

Calculate the two-leg savings margins, and select the lower savings margin as the final result.

The following combination types apply to this deduction algorithm:

YD_CPT_StockOption_KS: Straddle short positions of SSE and SZSE

YD_CPT_StockOption_KKS: Strangle short positions of SSE and SZSE

The above mentioned combined option margin can be obtained by selecting a small side according to the rules first, calculating the 
savings margin through the selected small side and then subtracting the savings margin from the sum of the original two-leg 
margins. The calculation formula for saving margins is: 

. 
The small side selection rules are:

Compare the two-leg option margins and select the smaller side. If they are the same, go to the next step;

Calculate the two-leg savings margins, and select the lower savings margin as the final result.

6.1.5.2.3 Sell option coverage  

The following combination types apply to this deduction algorithm:

YD_CPT_DCE_SellOptionsCovered: Sell options covered of DCE

YD_CPT_GFEX_SellOptionsCovered: Sell options covered of GFEX

YD_CPT_CZCE_SellOptionConvered: Sell options covered of CZCE

The combined margin can be obtained by calculating the savings margin relying on the left leg directly and then subtracting the 
savings margin from the sum of the original two-leg margins. The calculation formula for saving margins is: 

. The option price specified by the parameter value obtained when (Name, Target) 
of YDSystemParam is (MarginBasePrice, Options) is used in the formula. The calculation formula of the exchange option margin is 
the same as that of Commodity Option Margin. The pre settlement price and exchange margin rate should be used for the 
calculation. The exchange margin rate can be obtained through "YDInstrument.m_pExchangeMarginRate". 

YD Trading System C++ API Programming Guide

59 / 135

af://n2699
af://n2726
af://n2757


6.1.5.2.4 Buy option coverage  

The following combination types apply to this deduction algorithm:

YD_CPT_DCE_OptionsOffset: Options offset of DCE

YD_CPT_DCE_BuyOptionsVerticalSpread: Vertical spread of buy options of DCE

YD_CPT_DCE_BuyOptionsCovered: Buy options covered of DCE

YD_CPT_GFEX_OptionsOffset: Options offset of GFEX

YD_CPT_GFEX_BuyOptionsVerticalSpread: Vertical spread of buy options of GFEX

YD_CPT_GFEX_BuyOptionsCovered: Buy options covered of GFEX

When investors close the buy legs of the above combination, an additional margin will be required. If the available funds on the 
mainstream OMS are insufficient for the additional margin, the position closing service will be prohibited. YD believes that the 
prohibition of position closing will affect the release of risks and may cause higher risks instead, which also violates YD's principle of 
Position Closing without Fund Checking. Therefore, the available funds may become negative when buy legs are closed by YD. The 
above measure is at the discretion of brokers. If the brokers have any objection to this measure, they can disable the margin 
deduction function of this combination. After the function is disabled, combination is still allowed, but no margin deduction will be 
allowed, thus margin call liquidation will not be caused during position closing. If the brokers accept YD's measure, they can enable 
this function. For the initial installation, this function is disabled by default. Investors can check the function for being enabled when 
the parameter value of (Name, Target) of YDSystemParam is (PortfolioMarginConcession, DCELongOptionPortfolio).

If the deduction is enabled, the combined margin can be obtained by calculating the savings margin relying on the right leg directly 
and then subtracting the savings margin from the sum of the original two-leg margins. The calculation formula for saving margins is: 

. The combined margin discount in the formula is 
"YDCombPositionDef.Parameter". Please refer to Traditional combined Position Definition for details.

6.1.5.2.5 Vertical spread of sell options  

The following combination types apply to this deduction algorithm:

YD_CPT_DCE_SellOptionsVerticalSpread: Vertical spread of sell options of DCE

YD_CPT_GFEX_SellOptionsVerticalSpread: Vertical spread of sell options of GFEX

When investors close the buy legs of the above combination, an additional margin will be required. If the available funds on the 
mainstream OMS are insufficient for the additional margin, the position closing service will be prohibited. YD believes that the 
prohibition of position closing will affect the release of risks and can cause higher risks instead, which also violates YD's principle of 
Position Closing without Fund Checking. Therefore, the available funds may become negative when buy legs are closed by YD. The 
above measure is at the discretion of brokers. If the brokers have any objection to this measure, they can disable the margin 
deduction function of this combination. After the function is disabled, combination is still allowed, but no margin deduction will be 
allowed, thus margin call liquidation will not be caused during position closing. If the brokers accept YD's measure, they can enable 
this function. For the initial installation, this function is disabled by default. Investors can check the function for being enabled when 
the parameter value of (Name, Target) of YDSystemParam is (PortfolioMarginConcession, DCELongOptionPortfolio).

If the deduction is enabled, the combined margin can be obtained by calculating the savings margin relying on the right leg directly 
and then subtracting the savings margin from the sum of the original two-leg margins. The calculation formula for saving margins is:

6.1.5.2.6 Bull and bear spreads  

The following combination types apply to the deduction algorithms below:

YD_CPT_StockOption_CNSJC: Bull call spreads of SSE and SZSE

YD_CPT_StockOption_PXSJC: Bear put spreads of SSE and SZSE

The combined margin can be obtained by calculating the savings margin relying on the right leg directly and then subtracting the 
savings margin from the sum of the original two-leg margins. The calculation formula for saving margins is: 

. The right leg margin per lot means the actual right leg margin, refer to Stock 
Option Margin for the specific calculation method.

The following combination types apply to the deduction algorithms below:

YD_CPT_StockOption_CXSJC: Bear call spreads of SSE and SZSE

YD_CPT_StockOption_PNSJC: Bull put spreads of SSE and SZSE

The combined margin can be obtained by calculating the savings margin relying on the right leg directly and then subtracting the 
savings margin from the sum of the original two-leg margins. The calculation formula for saving margins is:

The right leg margin per lot means the actual right leg margin, refer to Stock Option Margin for the specific calculation method.

6.1.6 Trial calculation of margins  

The calculation of margins and combined margin deductions is relatively complex. In order to facilitate investors using 
ydExtendedApi to pre-calculate margins at a specified price, YD provides a series of methods. 

YD Trading System C++ API Programming Guide

60 / 135

af://n2767
af://n2784
af://n2794
af://n2811


Parameter Description

pInstrument Instrument pointer

hedgeFlag

Hedge flag.
YD_HF_Speculation=1: Speculation
YD_HF_Arbitrage=2: Arbitrage, only supported by CFFEX.
YD_HF_Hedge=3: Hedge

anyDirection
Trading direction, YD_D_Buy or YD_PD_Long can be used for representing "Buy", YD_D_Sell or YD_PD_Short
can be usded for representing "Sell"

openPrice

The price used is determined when the parameter value (Name, Target) of YDSystemParam is
(MarginBasePrice, Options):
YD_CBT_PreSettlementPrice: The pre settlement price shall always be used, openPrice is invalid
YD_CBT_OpenPrice: The value specified by openPrice shall be used
YD_CBT_LastPrice: The latest price shall always be used, openPrice is invalid
YD_CBT_MarketAveragePrice: The average market price shall always be used, openPrice is invalid
YD_CBT_MaxLastPreSettlementPrice: Usually, the higher value between the latest price and the previous
settlement price is used. When the instrument's daily trading volume is zero, the previous settlement price is
used. OpenPrice is invalid

pAccount Set to NULL

Parameter Description

pInstrument Instrument pointer

hedgeFlag

Hedge flag. The definition of hedge flags is different for futures exchanges and stock option exchanges.
The definition for futures exchanges is as follows:
YD_HF_Speculation=1: Speculation
YD_HF_Arbitrage=2: Arbitrage, only supported by CFFEX.
YD_HF_Hedge=3: Hedge
The definition for stock option exchanges is as follows:
YD_HF_Normal=1: Normal
YD_HF_Covered=3: covered

includePremium Including a premium or not

pAccount Set to NULL

6.1.6.1 Trial calculation of order margins  

Investors can obtain the futures margin per order lot at any time through the following method. The trial calculation does not 
involve the large-side margin except the order margin. This method is not apply to combined instruments.

The parameters involved in the above method are as follows:

Investors can obtain the option margin per order lot at any time through the following method. The price used for the trial 
calculation is selected by API according to the price settings.

The parameters involved in the above method are as follows:

6.1.6.2 Trial calculation of position margins  

The following method can be used for calculating the margin per position lot under different prices. A full position margin can be 
obtained by multiplying it by the position volume. For futures positions, the large-side margin is not calculated. Unlike the trial 
calculation of order margin, the openPrice here is not affected by YDSystemParam, and the price specified by openPrice in the 
parameters is directly used for calculating the underlying price.

6.1.6.3 Trial calculation of combined margins  

The following method can be used for trial calculation for a combination which does not exist. The pre settlement price is used for 
the trial calculation, so it may be different from the actual margin to be collected after combination.

The following method can help to obtain the true two-leg margin, savings margin and combined margin in relation to position 
details, , where the left/right-leg margins are 
legMargins[0] and legMargins[1], respectively, and the savings margin is the return value based on this method.

virtual double getMarginPerLot(const YDInstrument *pInstrument,int hedgeFlag,int anyDirection,double 

openPrice,const YDAccount *pAccount=NULL)

1

virtual double getOptionsShortMarginPerLot(const YDInstrument *pInstrument,int hedgeFlag,bool 

includePremium,const YDAccount *pAccount=NULL)

1

virtual double getMarginPerLot(const YDExtendedPosition *pPosition,double openPrice)1

virtual double getCombPositionMarginPerLot(const YDCombPositionDef *pCombPositionDef,const YDAccount 

*pAccount=NULL)

1

YD Trading System C++ API Programming Guide

61 / 135

af://n2813
af://n2855
af://n2858


6.2 Portfolio margin model  
Due to the specific logic of margin calculation algorithms being publicly disclosed by various exchanges, this article will not further 
discuss it. For more details, please refer to the relevant documents provided by the exchanges.

The YD portfolio margin model is consistent with CTP, and the following will introduce the common and differential parts of the 
portfolio margin model.

6.2.1 General concepts of portfolio margin model  

6.2.1.1 Investor margin coefficient  

Similar to traditional margin, brokers multiply the investor margin coefficient (typically greater than 1) with the exchange portfolio 
margin to determine the frozen margin for investors during trading, in order to control risks in extreme situations. In the traditional 
margin model, the investor margin coefficient can be set at the product level. However, in the portfolio margin model, the investor 
margin coefficient is set at the portfolio margin model level. The investor margin coefficient is derived from CTP's initial data and can 
be obtained through 'YDAccountMarginModelInfo.MarginRatio'. It can be dynamically adjusted during trading hours. For more 
details, please refer to Account Combination Margin Parameters.

Therefore, in the portfolio margin model, the margin formula for investors in a specific portfolio margin model is as follows:

6.2.1.2 Closing position check  

In some portfolio margin models, additional margin may be required upon closing a position. If the available funds are insufficient 
to cover the additional margin, it may result in fund overdraft. To address this, YD provides a Closing Position Check mode.

The Closing Position Check mode is used to control whether YD counter checks the available funds upon receiving a closing order. 
This parameter is derived from CTP's initial data and can be obtained through 'YDAccountMarginModelInfo.CloseVerify'. It can be 
dynamically adjusted during trading. For more details, please refer to account-combination-margin-parameters. The currently 
supported modes are as follows:

YD_CV_NotVerify：No Verification

YD_CV_Verify：Verification. The verification logic is as follows:

If it results in an increase in available funds, regardless of whether the available funds are less than 0 at this point, it is 
approved. Otherwise, continue to evaluate.

If the portfolio margin model specifically requests no verification for the current situation, it is approved. Otherwise, 
continue to evaluate.

If the available funds, after deducting the additional margin, are greater than or equal to 0, it is approved. Otherwise, it is 
not approved.

6.2.1.3 Applicable range  

In some portfolio margin models, a subset of products can be set as the applicable range for investors in that portfolio margin 
model. For example, the products that are applicable for the SPBM model include MA, PF, and SR, but it is possible to set that a 
particular investor only uses MA and PF. The applicable range is derived from CTP's preday data and can be obtained through 
'YDAccountMarginModelInfo.ProductRange'. It cannot be dynamically adjusted during trading. For more details, please refer to 
Account Portfolio Margin Parameters.

For products that belong to the portfolio margin model but are not applicable to a specific investor, the traditional margin model is 
still used to calculate the margin for those products.

6.2.2 CZCE SPBM  

Based on the standard model of SPBM, the following revisions are made according to the business logic of the mainstream OMS.

6.2.2.1 Freezing additional margin  

According to the SPBM standard model, margin reduction is possible upon order submission. To avoid such issues, when the 
discount ratio of the intracommodity lock fee rate within a product family (IntraRateY) is less than 1, an additional margin freeze will 
be imposed. The calculation formula for the freezing of additional margin is as follows:

，

The aforementioned long position margin and short position margin are calculated based on the SPBM standard model, where the 
calculation of buying margin and selling margin for a commodity only includes the portion held in positions. 

Similarly, a similar issue arises when the discount ratio of the intracommodity lock fee rate within a product family (IntraRateZ) is 
less than 0.5. However, considering the complexity of the calculation and the fact that there is currently no such situation in the 
SPBM production parameters, it is not implemented at the moment.

6.2.2.2 Closing position verification  

In the closing position verification, this portfolio margin model does not require verification for closing long positions in options.

virtual double getCombPositionMarginSaved(const YDExtendedCombPositionDetail *pCombPositionDetail,double 

legMargins[])

1

YD Trading System C++ API Programming Guide

62 / 135

af://n2863
af://n2866
af://n2867
af://n2870
af://n2885
af://n2888
af://n2890
af://n2895


6.2.2.3 Exercise margin  

When exercising and abandoning automatic exercise, the corresponding position needs to be deducted from the value of the long 
option, using the same deduction method as closing the option. For exercise requests, exercise margin needs to be frozen 
simultaneously.

Please refer to the content in the Option margin section for the calculation formula for out-of-the-money options. In the calculation 
of SPBM's exercise margin, the out-of-the-money options always use the previous settlement price.

6.2.3 DCE RULE  

Based on the Rule standard model, the following revisions are made according to the business logic of the mainstream OMS.

6.2.3.1 Exercise margin  

When exercising and abandoning automatic exercise, the portfolio margin is recalculated using the closing position freeze method. 
The exercise margin per lot is 0.

6.2.4 SHFE and INE SPMM  

6.2.4.1 Close-out freezing margin  

The closing freeze margin is calculated separately for each commodity group. First, the closing order's pure price risk is calculated 
separately for long and short positions within the commodity group, using the same method as for execution. Then, the sum of the 
pure price risk for long closing orders (sell to close order) and the sum of the pure price risk for short closing orders (buy to close 
order) within the commodity group are accumulated. Finally, the closing freeze margin for a single commodity group is obtained 
using the following formula. The closing freeze margins for all commodity groups are then added together to obtain the investor's 
total closing freeze margin, which is included as an addition to the SPMM investor's margin as the final margin.

The symbols in the above formula are defined as follows:

InCommPref：inter-period discount factor

L1：pure price risk of long position in commodity portfolio.

S1：pure price risk of short position in commodity portfolio.

L2：The sum of pure price risks of closing out long positions in the commodity portfolio (sell to close order)

S2：The sum of pure price risks of closing out short positions in the commodity portfolio (buy to close order)

6.2.5 CFFEX RCAMS  

The combined positions of arbitrage accounts are not supported. If an investor applies for combined positions of arbitrage 
accounts, it will be automatically discarded by the counter. 

YD Trading System C++ API Programming Guide

63 / 135

af://n2897
af://n2902
af://n2904
af://n2906
af://n2907
af://n2922


Parameter Field Description

YDInputOrder YDOrderFlag For providing YD_YOF_Normal information

  OrderRef
Customer order reference No. The OMS can show notified
customer order reference numbers, and investors can match
their orders with the notifications.

  Direction
YD_D_Buy: Buy
YD_D_Sell: Sell

  OffsetFlag

For Normal instruments:
YD_OF_Open: Open position
YD_OF_Close: Close position, which are unapplicable to SHFE
and INE. If used in SHFE and INE, they will be regarded as
YD_OF_CloseYesterday
YD_OF_CloseYesterday: Close pre position, which is applicable to
SHFE and INE. It will be regarded as YD_OF_Close
YD_OF_CloseToday: Close today's position if not used in SHFE
and INE. It is applicable to SHFE and INE. It will be regarded as
YD_OF_Close if not used in SHFE and INE.
For Combined instruments:
YD_OF_Open: Open the left and right legs at the same time
YD_OF_Close: Close the left and right legs at the same time
YD_OF_Open1Close2: Open the left leg and close the right leg
YD_OF_Close1Open2: Close the left leg and open right leg

  HedgeFlag
YD_HF_Speculation: Speculation
YD_HF_Arbitrage: Arbitrage, only supported by CFFEX
YD_HF_Hedge: Hedge

  OrderType

YD_ ODT_ Limit: Price-limited order
YD_ODT_Market: market order
YD_ODT_FAK: FAK order
YD_ODT_FOK: FOK order

  Price
Providing price information. The price shall not exceed the
upper/lower limits. YD does not control the price fluctuation
zone

  OrderVolume

The open and close position volumes are subject to the
following:
They should not be higher than the MaxMarketOrderVolume
and MaxLimitOrderVolume of instruments
They should not be lower than MinMarketOrderVolume and
MinLimitOrderVolume of instruments
They should not be higher than the position limit. Note: For SSE
and SZSE, the combined position volume is excluded

7 Trade  
7.1 Normal trading service  

7.1.1 Orders  

Order instructions are the most common instructions. Investors can call an order instruction to initiate a futures and options trade. 
Instructions that can be used for orders are as follows.

7.1.1.1 Normal orders  

First, the order instruction "insertOrder" is the most normal instruction. If a "False" regarding this function is sent back, it means that 
the network to an OMS is interrupted.

The parameters of the above method are described as follows:

virtual bool insertOrder(YDInputOrder *pInputOrder,const YDInstrument *pInstrument,const YDAccount 

*pAccount=NULL);

virtual bool insertMultiOrders(unsigned count,YDInputOrder inputOrders[],const YDInstrument 

*instruments[],const YDAccount *pAccount=NULL);

// only available in ydExtendedApi

virtual bool checkAndInsertOrder(YDInputOrder *pInputOrder,const YDInstrument *pInstrument,const YDAccount 

*pAccount=NULL);

virtual bool checkOrder(YDInputOrder *pInputOrder,const YDInstrument *pInstrument,const YDAccount 

*pAccount=NULL);

1

2

3

4

5

6

virtual bool insertOrder(YDInputOrder *pInputOrder,const YDInstrument *pInstrument,const YDAccount 

*pAccount=NULL);

1

YD Trading System C++ API Programming Guide

64 / 135

af://n2924
af://n2925
af://n2926
af://n2929


Parameter Field Description

  OrderTriggerType

Trigger type
YD_OTT_NoTrigger: No trigger
YD_OTT_TakeProfit: Profit taking trigger
YD_OTT_StopLoss: Loss stopping trigger
At present, triggered orders of DCE and GFEX are supported

  TriggerPrice Trigger price

  ExchangeOrderAttribute
The order attributes of the exchange, which shall be interpreted
by the exchange to which the order belongs.

YD_EOA_DCE_GIS=1：DCE
GIS(Good in Session).

   

YDInstrument   For specifying a trading instrument pointer

YDAccount  
The given "NULL" means that the current API login account is
used

Parameter Field Description

YDInputOrder YDOrderFlag For providing YD_YOF_Normal

  OrderRef
Customer order reference No. The OMS can show notified customer order
reference numbers, and investors can match their orders with the notifications.

  Direction
YD_D_Buy: Buy
YD_D_Sell: Sell

  OffsetFlag
When direction is YD_D_Buy，use YD_OF_Open
When direction isYD_D_Sell, use YD_OF_Close

  HedgeFlag Use YD_HF_Speculation

  OrderType

YD_ ODT_ Limit: Price-limited order
YD_ODT_Market: market order
YD_ODT_FAK: FAK order
YD_ODT_FOK: FOK order

  Price
Providing price information. The price shall not exceed the upper/lower limits.
YD does not control the price fluctuation zone

  OrderVolume

The open and close position volumes are subject to the following:
They should not be higher than the MaxMarketOrderVolume and
MaxLimitOrderVolume of instruments
They should not be lower than MinMarketOrderVolume and
MinLimitOrderVolume of instruments
They should not be higher than the position limit.
1 Buy/Sell quantity always means 1 share of stock, 1 fund and 1 bond

  OrderTriggerType Use YD_OTT_NoTrigger

  TriggerPrice Use 0

  ExchangeOrderAttribute Use 0

YDInstrument   For specifying a trading instrument pointer

YDAccount   The given "NULL" means that the current API login account is used

Exchange YD_ODT_Limit YD_ODT_FAK YD_ODT_Market YD_ODT_FOK

CFFEX
FFEX_FTDC_TC_GFD
FFEX_FTDC_OPT_LimitPrice

FFEX_FTDC_VC_AV

FFEX_FTDC_TC_IOC
FFEX_FTDC_OPT_LimitPrice

FFEX_FTDC_VC_AV

FFEX_FTDC_TC_IOC
FFEX_FTDC_OPT_AnyPrice

FFEX_FTDC_VC_AV

FFEX_FTDC_TC_IOC
FFEX_FTDC_OPT_LimitPrice

FFEX_FTDC_VC_CV

The parameters of spot orders are as follows：

Tip

In spot trading, stocks are traded in units of shares, and funds are traded in units of shares. One trading quantity of stocks 
represents one share, and one trading quantity of funds represents one fund. For bonds, the Shenzhen Stock Exchange uses 
sheets as units, and one trading quantity of bonds represents one bond, but the Shanghai Stock Exchange uses ten sheets as 
units, and one trading quantity of bonds represents ten bonds.

To provide a unified user experience, the Shanghai and Shenzhen Stock Exchange bonds traded in the YD OMS are all traded in 
sheets, that is, one trading quantity of bonds represents one bond, and the YD OMS is responsible for the conversion of 
quantity relations between the exchange and other systems.

The OrderType defined in the YD system is the combination of exchange order type conditions. The combination being the closest 
to YD's order types for each exchange should be set. The following shows the comparison relationship for each exchange:

YD Trading System C++ API Programming Guide

65 / 135



Exchange YD_ODT_Limit YD_ODT_FAK YD_ODT_Market YD_ODT_FOK

SHFE
SHFE_FTDC_TC_GFD
SHFE_FTDC_OPT_LimitPrice

SHFE_FTDC_VC_AV

SHFE_FTDC_TC_IOC
SHFE_FTDC_OPT_LimitPrice

SHFE_FTDC_VC_AV

Not supported. Before use, it should be
converted to:
SHFE_FTDC_TC_IOC

SHFE_FTDC_OPT_AnyPrice
SHFE_FTDC_VC_AV

SHFE_FTDC_TC_IOC
SHFE_FTDC_OPT_LimitPrice

SHFE_FTDC_VC_CV

DCE
OT_LO
OA_NONE

OT_LO
OA_FAK

OT_MO
OA_FAK

OT_LO
OA_FOK

CZCE
FID_OrderType=0 // Limited price
FID_MatchCondition=3 // Valid on the
current day

FID_OrderType=0 // Limited price
FID_MatchCondition=2 // Immediate partial
traded

FID_OrderType=1 // Market price
FID_MatchCondition=2 // Immediate
partial traded

FID_OrderType=0 // Price
FID_MatchCondition=1 // Immediate
all traded

GFEX
OT_LO

OA_NONE

OT_LO

OA_FAK

OT_MO

OA_FAK

OT_LO

OA_FOK

SSE
OrderType=Limit
TimeInForce=GFD

Not supported. It should be converted to
YD_ODT_FOK before use

OrderType=Market
TimeInForce=IOC

OrderType=Limit
TimeInForce=FOK

SZSE
OrderType=Limit
TimeInForce=GFD
MinQty=0

Not supported. It should be converted to

YD_ODT_FOK before use

OrderType=Market
TimeInForce=IOC
MinQty=0

OrderType=Limit
TimeInForce=GFD
MinQty=OrderVolume

SSE Stock Options
Platform

OrderType=Limit
TimeInForce=GFD

It should be converted to YD_ODT_FOK before
use.

OrderType=Market
TimeInForce=IOC

OrderType=Limit
TimeInForce=FOK

SSE Trading

Platform
OrderType=Limit Not supported OrderType=Market Not supported

SSE Bond Platform OrderType=Limit Not supported Not supported Not supported

SZSE Stock Option
OrderType=Limit
TimeInForce=GFD
MinQty=0

Not supported. It shoudl be converted to
YD_ODT_FOK before use

OrderType=Market
TimeInForce=IOC
MinQty=0

OrderType=Limit
TimeInForce=GFD
MinQty=OrderVolume

SZSE Spot
OrderType=Limit
TimeInForce=GFD
MinQty=0

Not supported    

Parameter Description

unsigned count Count of orders: 16 at most

YDInputOrder inputOrders[] Order arrays corresponding to instrument pointer arrays

YDInstrument *instruments[] Trading instrument pointer array

YDAccount The given "NULL" means that the current API login account is used

7.1.1.2 Multi-orders  

Multi-orders include not more than 16 orders each time, meeting customers' demand for simultaneous multi-leg order submission. 
Compared with repeated common report calling, it is not superior in overall performance. It is not suggested to select multi-orders 
for performance purposes. The following shows the analysis from both sending and receiving:

When sent by a client, the advantage of multi-orders is that the number of API calls can be reduced, but the sending is only 
allowed after all orders are prepared, while normal orders can be prepared one by one and sent immediately, which is more 
efficient considering resource utilization; In addition, multi-orders are more time-consuming since being always sent from large 
packages.

When receiving at an OMS, multi-orders are also received and processed in sequence, so the processing performance is 
basically the same as that for multiple normal orders

When all multi-orders are sent, a "True" will be sent back. When part of or multi-orders are not sent, a "False" will be sent back. The 
parameters can be given according to the following method:

After receiving the multi-orders, the processing method of YD OMSs for each order is the same as that of normal single orders: 
namely, each order means an independent trade, and successfully processed orders will not be returned as a whole even when risk 
control of the subsequent order fails, and those false orders in the front will not affect the processing of the subsequent orders. 
Therefore, the notification and cancellation in relation to multi-orders are the same as those to ordinary orders, except that there 
will be multiple notification callbacks.

7.1.1.3 Local risk control orders  

In ydExtendedApi, a series of instructions for risk control and order submission at the client are added. These instructions have 
been additionally provided with local money position and risk control checks to the corresponding orders. If the risk control fails, a 
"False" will be sent back directly. The error reason can be obtained from ErrorNo under YDInputOrder. Compared with original 
order instructions, when an instruction is easier to be intercepted by the risk control function at an OMS, the local risk control order 
instruction can help to more quickly show whether the orders can pass the money position and risk control checks at the OMS with 
a high probability, which facilitates the communication with the OMS and, correspondingly, increases the time cost of orders at the 
client. Therefore, the corresponding order instructions shall be chosen according to the actual conditions.

When the local risk control function is used for order submission, the OrderRef under YDInputOrder is coded by the API from 1. 
Even if a user assigns a value to OrderRef, it will be overwritten by the API. The OrderRef encoding mechanism makes use of the 
connection number encoding mechanism of ydExtendedApi, namely, local risk control and order submission naturally support 
multiple connection numbers. Please refer to Multi connection for details. After the call function is notified, the OrderRef used for 
order submission can be found in the incoming YDInputOrder.OrderRef. If the checks fail, the reason for the failure of risk control 
and order submission can also be found in YDINputOrder.ErrorNo.

virtual bool insertMultiOrders(unsigned count,YDInputOrder inputOrders[],const YDInstrument 

*instruments[],const YDAccount *pAccount=NULL)

1

virtual bool checkAndInsertOrder(YDInputOrder *pInputOrder,const YDInstrument *pInstrument,const YDAccount 

*pAccount=NULL)

1

YD Trading System C++ API Programming Guide

66 / 135

af://n3136
af://n3162


YD_OS_Accepted

YD_OS_Queuing

YD_OS_Canceled

YD_OS_Rejected

YD_OS_AllTraded

Parameter Field Description

YDOrder YDOrderFlag Fixed to YD_YOF_Normal

  TradeVolume Accumulated order trade volume

  OrderLocalID

Local OMS ID. For internal use by the YD OMS, its positive, negative, unique,
incremental and other characteristics may change due to the version of the
exchange, members, and the YD OMS. Please do not use this field as the
identification of the order.

  OrderSysID

For futures exchanges, it refers to a system order ID number sent back by an
exchange
For spot exchanges, it refers to a converted order ID number of a virtual exchange.
To obtain the real exchange order ID numbers, refer to the following contents
If the exchange order ID number exceeds the maximum length of OrderSysID, part of
it will be truncated

Orders passing the local risk control checks do not mean that they can pass the risk control check at the OMS, which may be caused 
by, but are not limited to the following reasons:

The market fluctuates greatly, and the time for position profit/loss and margin refresh through the OMS is inconsistent with 
that through the client, resulting in insufficient funds at the OMS though sufficient at the client;

If investors conduct trade via the same account relying on more than one strategy, the OMS check may fail due to the impact of 
other strategy orders;

Some risk control measures are only checked at the OMS.

When using the multi-order instructions regarding local risk control, the orders can only be submitted after passing the risk control 
check, which is different from the processing behavior of the multi-orders at the OMS.

Investors can also use the following instructions for checking without submitting orders:

7.1.1.4 Order notification  

All correct or incorrect exchange notifications will be sent back through notifyOrder. After receiving a notification, if the value of 
"YDOrder.ErrorNo" is 0, it will be process as a correct one; If the value of "YDOrder.ErrorNo" is not 0, it will be processed as a 
incorrect one.

If an order passes the OMS risk control check and is sent to an exchange, the notification will not be sent to the investor by default 
before receiving the notification from the exchange. However, the investor can ask the broker to enable the OMS notification 
function to receive the notification from the OMS. The investor can check the OMS notification function for being enabled 
depending on whether YD_AF_NotifyOrderAccept is set through AccountFlag of YDAccount. The OMS notification can be used as a 
credential for the OMS receiving the investor's order application. Investors worrying about missing of UDP orders can check for 
missed UDP package earlier through this mechanism. OMS notifications are sent back through notifyOrder, whose OrderStatus is 
YD_OS_Accepted. Except OrderSysID and InsertTime, other fields have been assigned correctly and can be used normally. Except 
those RFQ orders and option hedging instructions of DCE and GFEX, OMS notifications in relation to all other orders using the 
insertOrder series order instructions can be received.

When receiving notifications from an exchange, YD OMS will send order notifications to investors through notifyOrder accordingly. 
The status, quantity and sequence of notifications are related to the specific behavior of the exchange. For example, the 
YD_OS_Queuing statuses of some exchange FAK and FOK orders will not be sent back except final order notifications. For another 
example, if the price-limited orders of CFFEX are all traded when involved in the matching queue for the first time, only an all-traded 
notification rather than a queuing notification will be sent back. The exchanges do not and will not commit to the behavior of 
sending notifications and have the right to change this behavior at any time. However, both YD and exchanges ensure that the 
notification status is always transferred depending on the order status machine. Therefore, investors should not rely on the 
notification behavior of exchanges when developing strategy programs but should ensure that they can correctly handle regardless 
of the notification sequence received. The status machine diagram of orders is shown below.

The parameters sent back by notifyOrder are described as follows. The fields sent back through YDInputOrder will not be described:

virtual bool checkOrder(YDInputOrder *pInputOrder,const YDInstrument *pInstrument,const YDAccount 

*pAccount=NULL)

1

virtual void notifyOrder(const YDOrder *pOrder,const YDInstrument *pInstrument,const YDAccount *pAccount)1

YD Trading System C++ API Programming Guide

67 / 135

af://n3177


Parameter Field Description

  LongOrderSysID

For futures exchanges, it refers to a system order ID number sent back by an
exchange
For spot exchanges, it refers to a converted order ID number of a virtual exchange.
To obtain the real exchange order ID numbers, refer to the following contents
The exchange order ID number will not be truncated for the sake of a full-accuracy

  InsertTime

Second counts from the beginning (17:00) to the order submission time of a trading
day. For example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between YD's integral time and reference time, see string2TimeID
and timeID2String of ydUtil.h

  InsertTimeStamp

Millisecond counts from the beginning (17:00) to the order submission time of a
trading day. For example:
500 ms past 21:00 in night trading hours: 3600*(21-17)*1000+500 = 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-17)*1000+500 = 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference time, see
string2TimeStamp and timeStamp2String of ydUtil.h

  CancelTimeStamp

Millisecond counts from the beginning (17:00) to the order cancellation time of a
trading day. For example:
500 ms past 21:00 in night trading hours: 3600*(21-17)*1000+500 = 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-17)*1000+500 = 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference time, see
string2TimeStamp and timeStamp2String of ydUtil.h

  OrderTriggerStatus
Order trigger status
YD_OTS_NotTriggered: Not triggered
YD_OTS_Triggered: Triggered

  OrderStatus

The possible statuses and notification status machine are shown below:
YD_OS_Accepted: the OMS accepted, which will only appear in OMS notifications
YD_OS_Queuing: Queuing
YD_OS_AllTraded: All traded
YD_OS_Canceled: Canceled, including those orders traded or canceled
YD_OS_Rejected: Failed orders of exchanges

  ErrorNo
It will be 0 when the trade is made successfully, and the exchange error number
when an error occurs

YDInstrument   Order Instrument pointer

YDAccount   Current API login account

Parameter Field Description

YDIDFromExchange IDType

ID type, possible values are as follows:
YD_IDT_NormalOrderSysID: Normal order ID No.
YD_IDT_QuoteDerivedOrderSysID: Quote Derived order ID No.
YD_IDT_OptionExecuteOrderSysID: Option exercise order ID No.
YD_IDT_OptionAbandonExecuteOrderSysID: option abandon exercise order ID No.
YD_IDT_RequestForQuoteOrderSysID: RFQ order ID No.
YD_IDT_CombPositionOrderSysID: Combined order ID No.
YD_IDT_OptionExecuteTogether: Combined exercise order ID No.
YD_IDT_Mark: Combined order ID No.
YD_IDT_OptionSelfClose：Option Hedge ID No.
YD_IDT_FreezeUnderlying：Bond Locking and Unlocking ID No.
YD_IDT_Cover: Covered order ID No.
YD_IDT_TradeID: Traded ID No.
YD_IDT_CombPositionDetailID: Combination detail ID No.
YD_IDT_QuoteSysID: Quote ID No.

  IDInSystem The ID value converted by YD OMS may be truncated

Since the exchange order ID numbers, combination numbers and exercise numbers used by SSE and SZSE are not integers, YD 
cannot directly put these numbers sent back by exchanges into the OrderSysID field but fill in it with digitally converted native 
exchange numbers. The following two methods show native exchange numbers.

For investors using ydApi and ydExtendedApi, the native order ID numbers can be received through the notifyIDFromExchange 
callback function of YDListener. Such callback can only be received after the exchange number is converted, which will not be 
received when the trade is made in futures exchanges.

The notified parameters are described as follows:

virtual void notifyIDFromExchange(const YDIDFromExchange *pIDFromExchange,const YDExchange *pExchange)1

YD Trading System C++ API Programming Guide

68 / 135



Parameter Field Description

  LongIDInSystem Full-accuracy ID value converted by YD OMS

  IDFromExchange Exchange's native ID value, max. length: 24 bytes

YDExchange   Exchange pointer

Field Description

m_pInstrument Order instrument pointer

m_pCombPositionDef
The order type is YD_YOF_CombPosition, which is valid for combining or decombining and defines
the pointer for traditional combined positions

m_pAccount Pointer of investor to which orders belong

m_pInstrument2
The order type is YD_YOF_OptionExecuteTogether, which is valid in case of combined exercise and is
the pointer of the second instrument for combined exercise

Parameter Field Description

YDTrade TradeID
The trade ID number sent back by an exchange
If the exchange order ID number exceeds the maximum length of the TradeID, part of it
will be truncated

  OrderLocalID

Local OMS ID. For internal use by the YD OMS, its positive, negative, unique,
incremental and other characteristics may change due to the version of the exchange,
members, and the YD OMS. Please do not use this field as the identification of the
order.

  LongTradeID Full-accuracy trade ID number sent back from an exchange

  OrderSysID

For futures exchanges, it refers to a system order ID number sent back by an exchange
For spot exchanges, it refers to a converted order ID number of a virtual exchange. To
obtain the real exchange order ID numbers, see the following contents
If the exchange order ID number exceeds the maximum length of OrderSysID, part of it
will be truncated

  LongOrderSysID

For futures exchanges, it refers to a system order ID number sent back by an exchange
For spot exchanges, it refers to a converted order ID number of a virtual exchange. To
obtain the real exchange order ID numbers, see the following contents
The exchange order ID number will not be truncated for the sake of a full-accuracy

  OrderRef Investor's order reference No.

  OrderGroupID Order group ID number to which an order belongs

  Price Trade price

  Volume Trade volume

For investors using ydExtendedApi, the native ID numbers can also be directly queried through getIDFromExchange. For the 
meaning of the parameters to be entered for query, see the table above. The maximum length of the native ID number sent back is 
24 bytes.

7.1.1.5 Extended order notification  

If YDExtendedListener is used by investors, notifications can be received through notifyExtendedOrder under the following 
circumstances:

In case of a notifyOrder callback, regardless of correct or incorrect orders, regardless of orders rejected by the OMS or an 
exchange

In case of an attribute change of YDExtendedOrder 

In case of a successful order submission and sending through checkAndInsertOrder

Since YDExtendedTrade comes from YDTrade, exclusive fields of YDExtendedTrade are:

7.1.1.6 Trade notification  

When a trade is generated, a trade notification will be sent back through notifyTrade. The OrderRef, OrderLocalID, and OrderSysID 
of the trade notification can be used for correlating to a specific order.

The return values of the trade notification are as follows, those fields being the same as those of orders will not be described again:

virtual const char *getIDFromExchange(const YDExchange *pExchange,int idType,int idInSystem)1

virtual void notifyExtendedOrder(const YDExtendedOrder *pOrder)1

virtual void notifyTrade(const YDTrade *pTrade,const YDInstrument *pInstrument,const YDAccount *pAccount)   

{}

1

YD Trading System C++ API Programming Guide

69 / 135

af://n3272
af://n3299


Parameter Field Description

  Commission Trade commission

  TradeTime

Second counts from the beginning (17:00) to the trade time of a trading day. For
example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between the TimeID and reference time, see string2TimeID and
timeID2String of ydUtil.h

  TradeTimeStamp

Millisecond counts from the beginning (17:00) to the trade time of a trading day. For
example:
500 ms past 21:00 in night trading hours: 3600*(21-17)*1000+500 = 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-17)*1000+500 = 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference time, see
string2TimeStamp and timeStamp2String of ydUtil.h

YDInstrument   Trade instrument pointer

YDAccount   Current API login account

Field Description

m_pInstrument Trade instrument pointer

m_pAccount Investor pointer to which a trade belongs

Parameter Field Description

YDCancelOrder YDOrderFlag For providing the type information of orders to be cancelled

  OrderSysID Exchange order ID No.

  LongOrderSysID Full-accuracy exchange order ID No.

  OrderGroupID
For specifying the logical group to which an order and a quote belong. When it is used
together with OrderRef, OrderRef orders can be cancelled

  OrderRef
Investor's order reference No. When it is used together with OrderGroupID, OrderRef
orders can be cancelled

YDExchange   Exchange for order cancellation

YDAccount   The given "NULL" means that the current API login account is used

7.1.1.7 Extended trade notification  

If an investor uses YDExtendedListener, the notifyExtendedTrade will be called back in case of a notifyTrade callback:

Since YDExtendedTrade comes from YDTrade, exclusive fields of YDExtendedTrade are:

7.1.2 Order cancellation  

Investors can call the following function to cancel orders under queuing (the OrderStatus is YD_OS_Queuing).

7.1.2.1 Normal order cancellation  

The following method can be used to cancel a single order. If a "False" regarding this function is sent back, it means that the network 
to an OMS is interrupted.

The parameters of the above method are described as follows:

The OMSs support three order cancellation modes, including LongOrderSysID, OrderSysID, and OrderRef. The OrderRef order 
cancellation mode allows investors to cancel orders before receiving notifications. Currently, it is supported by CFFEX, SHFE, INE, 
DCE, SSE and SZSE. 

virtual void notifyExtendedTrade(const YDExtendedTrade *pTrade)1

virtual bool cancelOrder(YDCancelOrder *pCancelOrder,const YDExchange *pExchange,const YDAccount 

*pAccount=NULL)

virtual bool cancelMultiOrders(unsigned count,YDCancelOrder cancelOrders[],const YDExchange 

*exchanges[],const YDAccount *pAccount=NULL)

1

2

virtual bool cancelOrder(YDCancelOrder *pCancelOrder,const YDExchange *pExchange,const YDAccount 

*pAccount=NULL)

1

YD Trading System C++ API Programming Guide

70 / 135

af://n3364
af://n3378
af://n3381


Parameter Description

unsigned count Count of orders to be cancelled: 16 at most

YDCancelOrder cancelOrders[] Order cancellation information arrays corresponding to exchange pointer arrays

YDExchange *exchanges[] Exchange pointer array corresponding to each order cancellation information

YDAccount The given "NULL" means that the current API login account is used

Parameter Field Description

YDCancelOrder AccountRef Account reference No.

  ExchangeRef Exchange reference No.

  YDOrderFlag Type of order corresponding to cancellation error

  OrderSysID Exchange order ID No.

  LongOrderSysID Full-accuracy exchange order ID No.

  OrderGroupID Order logic group ID

  OrderRef Investor's order reference No.

  ErrorNo Error No.

  IsQuote Is it a notification for quote cancellation

YDExchange   Exchange with order cancellation error

YDAccount   Account for order cancellation error

GFEX must use the information returned by the exchange to cancel an order, so it cannot support order cancellation before 
receiving a return. If an investor sends an OrderRef cancellation request to the GFEX counter before the counter receives a 
return from the exchange, the counter will reject it and return an error of YD_ERROR_ExchangeConnectionSendError=80; if an 
investor sends an OrderRef cancellation request to the GFEX counter after the counter receives a return from the exchange, 
the counter will use the return information to initiate an order cancellation request to the exchange. Therefore, there is 
uncertainty in GFEX's OrderRef cancellation, and it is not recommended.

The logic of the cancellation mode is as follows:

First, judge the OrderGroupID. If the OrderGroupID is 0, continue to evaluate the value of LongOrderSysID. Otherwise, proceed 
with the logic for non-zero OrderGroupID.

If LongOrderSysID is not 0, the LongOrderSysID can be used for cancelling orders

If LongOrderSysID is 0, OrderSysID can be used for cancelling orders

If OrderGroupID is not 0, OrderRef can be used for cancelling orders

7.1.2.2 Multi-order cancellation  

Multi-order cancellation can help to cancel up to 16 orders each time, its characteristics are similar to Multi-Orders.

The parameters of the above method are described as follows:

7.1.2.3 Order cancellation notification  

If orders are cancelled successfully, the latest statuses of those cancelled orders will be sent back through notifyOrder, please refer 
to Order Notification for details.

If the order cancellation fails, a notification will be sent back through the following callback regardless of the cancellation caused by 
the OMS rejection or the exchange rejection. Just check the ErrorNo of the YDFailedCancelOrder to obtain the reason for the 
cancellation failure. Generally, this error is made in that the orders have been traded or cancelled.Please note that YD cannot 
ensure a strict correspondence between a cancellation failure notification and an investors' cancellation instruction in 
terms of volume and content. It is strongly suggested that investors only use the cancellation failure notifications for 
logging. The trading strategy should not be dependent on cancellation failure notifications but should establish a timeout 
mechanism after cancellation instructions are sent. If no notification on the corresponding change of order status is 
received within a set period of time, a new cancellation instruction should be sent

The parameters of the above method are described as follows:

Generally, the information sent back due to order cancellation failure corresponds to the method used for cancellation, namely:

Filling in OrderSysID/LongOrderSysID and OrderGroupID/OrderRef is meaningless in notifications regarding order cancellation 
through OrderSysID and LongOrderSysID.

Filling in OrderGroupID/OrderRef and OrderSysID/LongOrderSysID is meaningless in notifications regarding order cancellation 
through OrderGroupID and OrderRef.

virtual bool cancelMultiOrders(unsigned count,YDCancelOrder cancelOrders[],const YDExchange 

*exchanges[],const YDAccount *pAccount=NULL)

1

virtual void notifyFailedCancelOrder(const YDFailedCancelOrder *pFailedCancelOrder,const YDExchange 

*pExchange,const YDAccount *pAccount)

1

YD Trading System C++ API Programming Guide

71 / 135

af://n3432
af://n3452


Parameter Field Description

YDInputOrder YDOrderFlag
For filling in YD_YOF_FreezeUnderlying, indicating that the order is subject to a spot
freezing service

  OrderRef Customer order reference No., see the description of OrderRef in Normal Order for details

  Direction
YD_D_Freeze: Freeze
YD_D_Unfreeze: Unfreeze

  OrderVolume For providing the volume to be frozen and unfrozen

  HedgeFlag For filling in YD_HF_Covered

YDInstrument   For specifying a spot instrument pointer to be frozen or unfrozen

YDAccount   The given "NULL" means that the current API login account is used

Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_Normal

  OrderRef Customer order reference No., see the description of OrderRef in Normal Order for details

  Direction
YD_D_Buy: Buy
YD_D_Sell: Sell

  OffsetFlag
YD_OF_Open: Open
YD_OF_Close: Close

  HedgeFlag For filling in YD_HF_Covered

  OrderType

For providing the following values as needed:
YD_ODT_Limit: Price-limited Order
YD_ODT_Market: Market Order
YD_ODT_FOK: FOK Order

  Price For providing a price

  OrderVolume Volume for open and close

YDInstrument   For specifying an option instrument pointer for covered position opening and closing

YDAccount   The given "NULL" means that the current API login account is used

However, under the following circumstances, the notification on failure of order cancellation using OrderGroupID and OrderRef is 
different from that mentioned above:

Notifications on cancellation failures sent by exchanges will not be forwarded to investors.

When an order notification has been sent back and errors such as flow control or network disconnection occur during 
cancellation, the OrderSysID and LongOrderSysID will be filled out in the order cancellation failure notification. 

Therefore, when receiving a cancellation failure notification, the notified information should be checked. If OrderGroupID is 0, the 
corresponding order can be found through OrderSysID or LongOrderSysID; If OrderGroupID is not 0, the corresponding order can 
be found through OrderGroupID and OrderRef.

Generally, investors use OrderRef to establish an order index. When receiving a cancellation error notification with filled out 
OrderSysID and LongOrderSysID, the following method can be used to obtain the corresponding OrderRef and OrderGroupID:

7.2 Covered service  

7.2.1 Spot freezing and unfreezing  

Before covered stock option service and normal-to-covered conversion service of SSE, the spot positions should be locked first. 
When SZSE carries out a covered service, its trading system is subject to an internal freezing service, so the covered service can be 
carried out directly without freezing in advance.

The freezing and unfreezing services should be initiated to exchanges through the insertOrder instruction according to the following 
parameter description. 

7.2.2 Covered open and close  

The open and close services should be initiated to exchanges through the "insertOrder" instruction according to the following 
parameter description.

virtual const YDExtendedOrder *getOrder(int orderSysID,const YDExchange *pExchange,int 

YDOrderFlag=YD_YOF_Normal)

virtual const YDExtendedOrder *getOrder(long long longOrderSysID,const YDExchange *pExchange,int 

YDOrderFlag=YD_YOF_Normal)

1

2

YD Trading System C++ API Programming Guide

72 / 135

af://n3521
af://n3522
af://n3558


Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_Cover

  OrderRef Customer order reference No., see the description of OrderRef in Normal Order for details

  Direction
YD_D_Normal2Covered: Normal-to-covered
YD_D_Covered2Normal: Covered-to-normal, only supported by SZSE

  HedgeFlag For filling in YD_HF_Covered

  OrderVolume Volume to be converted

YDInstrument   For specifying an option instrument pointer to be converted

YDAccount   The given "NULL" means that the current API login account is used

Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_RequestForQuote

  Direction For filling in YD_D_Buy

  OffsetFlag For filling in YD_OF_Open

  HedgeFlag

Hedge flag.
YD_HF_Speculation=1：Speculation
YD_HF_Hedge=3：Hedge
DCE and CZCE do not use this flag, the YD OMS uniquely determines the trading code using
the capital account and the hedge flag, therefore please specify the corresponding hedge
flag.

  OrderType For filling in YD_ODT_Limit

YDInstrument   For specifying an instrument pointer for RFQ

YDAccount   The given "NULL" means that the current API login account is used

Parameter Field Description

YDRequestForQuote RequestTime

Second counts from the beginning (17:00) to the RFQ time of a trading
day. For example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between the integral time and reference time, see
string2TimeID and timeID2String of ydUtil.h

  RequestForQuoteID
RFQ ID number. If being too long, the number length sent back will be
truncated

  LongRequestForQuoteID Full-accuracy RFQ ID number

YDInstrument   RFQ instrument pointer

7.2.3 Normal-to-covered conversion  

The normal-to-covered or covered-to-normal conversion service should be initiated to exchanges through the insertOrder 
instruction according to the following parameter description. It should be noted that both SSE and the SZSE support normal-to-
covered conversion, but only SZSE supports covered-to-normal conversion.

7.3 Market maker service  

7.3.1 RFQ  

For SHFE, INE, CFFEX, DCE, CZCE and GFEX, the RFQ should be sent through insertOrder according to the following parameter 
description. The RFQ must be made to an instrument allowing the request, otherwise it will be meaningless.

The SHFE and INE allow RFQ to be involved in the message count calculation. In order to prevent investors from unexpectedly 
exceeding the message count limit and being charged a high commission, YD provided Message Count Risk Control.

Even if an OMS notification YD_AF_NotifyOrderAccept function has been set for the AccountFlag of YDAccount, no OMS notification 
regarding the RFQ instruction will be sent.

The RFQ notification notifyRequestForQuote is only sent by the market maker system (a market maker flag is included in the OMS 
license file) in order to prevent those unnecessary data, and ordinary systems cannot receive RFQ notifications.

The following shows a description of the information sent back from notifyRequestForQuote.

In ydExtendedApi, YD provides a method for actively querying RFQ ID numbers as shown below:

virtual void notifyRequestForQuote(const YDRequestForQuote *pRequestForQuote,const YDInstrument 

*pInstrument)

1

YD Trading System C++ API Programming Guide

73 / 135

af://n3605
af://n3640
af://n3641


Parameter Field Description

YDInputQuote OrderRef
Customer order reference No., see the description of OrderRef in Normal Order
for details

  BidOffsetFlag Bid offset flag

  BidHedgeFlag

Bid hedge flag
CFFEX: Actually, the exchange interface only supports the same hedge flag on
both sides, which will not be checked by YD, however when submitting orders to
the exchange, the customer ID number corresponding to the buyer's hedge flag
should be used.
Other exchanges: The buyer's and seller's hedge flags can be different

  AskOffsetFlag Ask offset flag

  AskHedgeFlag Ask hedge flag

  BidPrice Bid price. The buying price must be lower than the selling price

  AskPrice Ask price

  BidVolume

Bid volume. Depending on YDExchange.QuoteVolumeRestriction, different trade
volume limits are provided:
0 (DCE, GFEX, SSE, SZSE ): At least one of BidVolume and AskVolume is higher
than 0, and the other is higher than or equal to 0
1 (CFFEX): BidVolume and AskVolume must be higher than 0, however they can
be different
2 (SHFE, INE, CZCE): BidVolume and AskVolume must be equal and higher than 0

  AskVolume Ask volume

  OrderRef Customer's order reference No.

  YDQuoteFlag

Quote flag, This field is a bitmap that can simultaneously set multiple flags.
YD_YQF_ResponseOfRFQ: For automatically filling in the RFQ number to indicate
the response price. It is supported by SHFE, INE, DCE, GFEX and CZCE. Other
exchanges do not provide RFQ numbers.
YD_YQF_ReplaceLastQuote：Whether or not to top the last sent quote is only
effective for CFFEX.

  ExchangeQuoteAttribute
the quote attributes of the exchange, which shall be interpreted by the exchange
to which the quote belongs.
YD_EOA_DCE_GIS=1：DCE GIS(Good in Session).

YDInstrument   For specifying an instrument pointer to be quoted

YDAccount   The given "NULL" means that the current API login account is used

The return value YDExtendedRequestForQuote of the above method is a subclass of YDRequestForQuote, so the RequestTime and 
RequestForQuoteID can be read directly. If no quote is found after a query, the operation of the above method will return NULL.

7.3.2 Quote  

YD supports the market maker quote service of SHFE, INE, CFFEX, DCE, GFEX, CZCE, SSE and SZSE. The quote instructions can only be 
used through YD OMSs with the market maker function enabled (a MarketMaker flag is included in the OMS authorization file). The 
current OMS can be checked for supporting the quote function depending on the MarketMaker flag of SystemParam. Please refer to 
System Parameter for details.

7.3.2.1 Normal quote  

Market makers can send single quotes according to the following method. If a "False" is sent back through this function, it means 
that the network to the OMS has been interrupted.

The parameters of the above method are described as follows:

After initiating a quote request, in order to unify the quote service of all exchanges, the YD OMS will generate corresponding orders 
for the quote. The YDOrderFlag of these orders is YD_YOF_QuoteDerived: If involving a two-sided quote, two derived orders will be 
generated; If involving a one-side quote, only one derived order will be generated. Derived orders only exist in YD and will not be 
sent to exchanges. The traded quotes and order statuses will be shown on the derived orders, while the quotes themselves are 
provided without any status information. The relationship between the derived order fields YDOrder and quote YDQuote fields is as 
follows:

The directions of derived buy/sell orders correspond to YD_D_Buy and YD_D_Sell, respectively

The OffsetFlag of derived buy/sell orders corresponds to BidOffsetFlag and AskOffsetFlag, respectively

The HedgeFlag of derived buy/sell orders corresponds to BidHedgeFlag and AskHedgeFlag, respectively

The prices of derived buy/sell orders correspond to BidPrice and AskPrice, respectively

virtual const YDExtendedRequestForQuote *getRequestForQuote(const YDInstrument *pInstrument)1

virtual bool insertQuote(YDInputQuote *pInputQuote,const YDInstrument *pInstrument,const YDAccount 

*pAccount=NULL)

1

YD Trading System C++ API Programming Guide

74 / 135

af://n3706
af://n3708


Parameter Description

unsigned count Count of quotes: 12 at most

YDInputQuote inputQuotes[] Order arrays corresponding to instrument pointer arrays

const YDInstrument *instruments[] Exchange point array corresponding to each quote

YDAccount The given "NULL" means that the current API login account is used

Parameter Field Description

YDQuote QuoteSysID

If ErrorNo is YD_ERROR_InvalidGroupOrderRef, it means that the maximum
OrderRef has been received by current OMS; Otherwise, it means a quote
number for quote cancellation. If the return value of the exchange is too long, it
will be truncated.

  BidOrderSysID
The OrderSysID of the bid quote, which is 0 when selling a one-side quote. If the
return value of the exchange is too long, it will be truncated.

  AskOrderSysID
The OrderSysID of the ask quote, which is 0 when buying a one-side quote. If
the return value of the exchange is too long, it will be truncated.

  RequestForQuoteID
When YDQuoteFlag is YD_YQF_ResponseOfRFQ, the order response RFQ
number will be recorded, otherwise will be 0. If the return value of the
exchange is too long, it will be truncated.

  LongQuoteSysID Full-accuracy quote number for quote cancellation

  LongBidOrderSysID
The OrderSysID of a full-accuracy bid quote, which will be 0 when selling a one-
side quote

The OrderVolume of derived buy/sell orders corresponds to BidVolume and AskVolume, respectively

The OrderRef of derived buy/sell orders refers to the OrderRef of quotes

The YDOrderFlag of derived buy/sell orders refers to YD_YOF_QuoteDerived

The OrderLocalID of derived buy/sell orders is numbered according to the normal order sequence. The OrderLocalID of 
derived sell orders must be the OrderLocalID+1 of buy orders 

The OrderSysID of derived buy/sell orders correspond to BidOrderSysID and AskOrderSysID, respectively

7.3.2.2 Multi-quote  

The multi-quote service can involve no more than 12 quotes each time, and its characteristics are similar to Multi-Orders.

The parameters of the above method are described as follows:

7.3.2.3 Quote notification  

All correct or incorrect exchange quote notifications will be sent back through notifyQuote. After receiving a notification, if 
YDQuote.ErrorNo is 0, it will be process as a true one; If YDQuote.ErrorNo is not 0, it will be processed as false one.

If the quote is made successfully, a notification will be received through the following callback functions, where:

notifyQuote: Each quote corresponds to only one notification, indicating that the exchange has received the quote request, and 
its position among notifyOrder callbacks is not ensured;

notifyOrder: This callback will be received when the status of a derived order changes, and its status machine is the same as 
that for normal orders;

notifyTrade: The quote is the same as that for a normal order. A trade notification will be generated when a quote is accepted 
successfully. It can be associated with a derived order through OrderLocalID, or with a quote through OrderSysID.

Similar to Order Notification, the order of 'notifyQuote' and 'notifyOrder' depends on the specific behavior of the exchange. For 
example, after receiving a two-sided quote, CFFEX first sends the 'notifyQuote' for the quote and then sends the 'notifyOrder' for the 
two derivative orders. On the other hand, SHFE first sends the 'notifyOrder' for the two derivative orders and then sends the 
'notifyQuote' for the quote. The exchange does not promise or guarantee any behavior regarding quote feedback, and reserves the 
right to change such behavior at any time. Therefore, when developing strategy programs, investors should not rely on the 
exchange's feedback behavior and instead ensure that they can handle it correctly regardless of the order in which they receive any 
type of feedback.

Among them, notifyOrder and notifyTrade are the same as normal orders. The YDQuote of notifyQuote is a subclass of 
YDInputQuote. In addition to the regular RealConnectionID and ErrorNo, the new information for YDQuote is as follows:

virtual bool insertMultiQuotes(unsigned count,YDInputQuote inputQuotes[],const YDInstrument 

*instruments[],const YDAccount *pAccount=NULL)

1

virtual void notifyQuote(const YDQuote *pQuote,const YDInstrument *pInstrument,const YDAccount *pAccount) 

{}

virtual void notifyOrder(const YDOrder *pOrder,const YDInstrument *pInstrument,const YDAccount *pAccount)   

{}

virtual void notifyTrade(const YDTrade *pTrade,const YDInstrument *pInstrument,const YDAccount *pAccount)   

{}

1

2

3

YD Trading System C++ API Programming Guide

75 / 135

af://n3793
af://n3813


Parameter Field Description

  LongAskOrderSysID
The OrderSysID of a full-accuracy ask quote, which will be 0 when buying a one-
side quote

  LongRequestForQuoteID
Full-accuracy. When YDQuoteFlag is YD_YQF_ResponseOfRFQ, the full-accuracy
order response RFQ number will be recorded, otherwise will be 0

YDInstrument   Quote instrument pointer

YDAccount   current API login account pointer

Field Description

BidOrderFinished
For determining whether a derived order corresponding to a buy leg has been finished
When the derived order is cancelled, completed or rejected, it is considered finished
If the quote bid volume is 0, it will be directly considered finished

AskOrderFinished
For determining whether a derived order corresponding to a sell leg has been finished
When the derived order is cancelled, completed or rejected, it is considered finished
If the quote ask volume is 0, it will be directly considered finished

m_pInstrument Quote instrument pointer

m_pAccount Investor pointer to which the quote belongs

Parameter Field Description

YDCancelQuote QuoteSysID Exchange quote number

  LongQuoteSysID Full-accuracy exchange quote number

  OrderGroupID
For specifying the logical group to which the quote belongs, which can be used
together with OrderRef for quote cancellation through OrderRef

  OrderRef For using together with OrderGroupID for quote cancellation through OrderRef

YDExchange   Exchange pointer for quotes to be cancelled

YDAccount   The given "NULL" means that the current API login account is used

7.3.2.4 Extended quote notification  

If YDExtendedListener is used by investors, notifications can be received through notifyExtendedQuote under the following 
circumstances:

In case of a notifyOrder callback, regardless of correct or incorrect quotes and regardless of orders rejected by the OMS or an 
exchange

In case of an attribute change of YDExtendedQuote

In case of a successful order submission and sending through checkAndInsertQuote

Since YDExtendedQuote comes from YDQuote, exclusive fields of YDExtendedQuote are:

7.3.3 Quote cancellation  

Investors can call the following method to cancel unhandled quotes.

Based on the current implementation of the DCE, if the one leg's derivative orders are all traded or cancelled and another leg's 
are in the pending status, the quote canncellation order will cause exchange to return canncellation error to the OMS at first. 
The OMS will return cancellation error through notifyFailedCancelQuote, and then will notify that leg which in that pending 
status's derivative orders are cancelled. The OMS will return derivative orders' order return through notifyOrder. Investors are 
advised to avoid this problem.

7.3.3.1 Normal quote cancellation  

The following method can be used for cancelling single quotes. If a "False" is sent back through this function, it means that the 
network to an OMS has been interrupted.

The parameters of the above method are described as follows:

virtual void notifyExtendedQuote(const YDExtendedQuote *pQuote)1

virtual bool cancelQuote(YDCancelQuote *pCancelQuote,const YDExchange *pExchange,const YDAccount 

*pAccount=NULL)

virtual bool cancelMultiQuotes(unsigned count,YDCancelQuote cancelQuotes[],const YDExchange 

*exchanges[],const YDAccount *pAccount=NULL)

1

2

virtual bool cancelQuote(YDCancelQuote *pCancelQuote,const YDExchange *pExchange,const YDAccount 

*pAccount=NULL)

1

YD Trading System C++ API Programming Guide

76 / 135

af://n3871
af://n3898
af://n3903


Parameter Description

unsigned count Count of quotes to be cancelled: 16 at most

YDCancelQuote cancelQuotes[] Quote cancellation information arrays corresponding to exchange pointer arrays

YDExchange *exchanges[] Exchange pointer array corresponding to each quote cancellation information

YDAccount The given "NULL" means that the current API login account is used

Parameter Field Description

YDCancelQuote  
Used to specify the order connection. Please do not fill in other business fields
related to quote cancellation in the structure.

YDInstrument   The instrument pointer of instrument to cancel quote

cancelQuoteByInstrumentType  

The method of cancelling quotes. It is only valid for SSE. SZSE can only cancel
quotes from both sides at the same time.：
YD_CQIT_Buy=1：Withdrawl buy side
YD_CQIT_Sell=2：Withdrawl sell side
YD_CQIT_Both=3：Withdrawl both side

YDAccount   Fill in NULL to use the current API login account

The OMSs support three quote cancellation modes, including LongOrderSysID, OrderSysID, and OrderRef. The OrderRef order 
cancellation mode allows investors to cancel orders before receiving notifications. Currently, it is supported by CFFEX, SHFE, INE, 
DCE, SSE and SZSE. 

The cancellation of quotes by GFEX (including single-sided quotes and double-sided quotes) and the cancellation of double-
sided quotes by DCE must use the information returned by the exchange, so it is not possible to support the cancellation of 
quotes before receiving returns. If an investor sends an OrderRef cancellation request to the GFEX or DCE counter before the 
counter receives the return from the exchange, it will be rejected by the counter and return the error 
YD_ERROR_ExchangeConnectionSendError=80; if an investor sends an OrderRef cancellation request to the GFEX or DCE 
counter after the counter receives the return from the exchange, the counter will use the return information to initiate a 
cancellation request to the exchange. Therefore, there is uncertainty in the OrderRef cancellation of quotes by GFEX (including 
single-sided quotes and double-sided quotes) and the cancellation of double-sided quotes by DCE, and it is not recommended.

The logic of the cancellation mode is as follows:

First, judge the value of OrderGroupID. If OrderGroupID is 0, then continue to evaluate the value of LongQuoteSysID. 
Otherwise, proceed with the logic for non-zero OrderGroupID.

If LongQuoteSysID is not 0, the LongQuoteSysID can be used for cancelling quotes

If LongQuoteSysID is 0, OuoteSysID can be used for cancelling quotes

If OrderGroupID is not 0, OrderRef can be used for cancelling quotes

7.3.3.2 Multi-quote cancellation  

Multi-quote cancellation can help to cancel up to 16 orders each time, its characteristics are similar to Multi-Orders.

The parameters of the above method are described as follows:

7.3.3.3 Cancel Derivative Quote  

DCE and GFEX support the cancellation of one side of the double-sided quote by cancelling derivative orders, but CFFEX, SHFE, INE, 
CZCE, SSE and SZSE do not support it. The method of cancelling derivative orders is the same as that of ordinary orders. Please refer 
to the corresponding content of order cancellation. Similar to cancelling quotes, when cancelling one-leg derivative orders, there will 
only be an order callback notifyOrder, but no quote callback notifyQuote. Only when both legs of derivative orders are cancelled will 
the quote callback be returned.

7.3.3.4 Cancel Instrument Quote  

Unlike futures exchanges, SSE and SZSE need to use the following method to cancel quotes by contract. If the function returns false, 
it means that the network to the YD OMS is interrupted.

The parameters of the above method are described as follows：

7.3.3.5 Quote cancellation notification  

If quotes are cancelled successfully, the status of each derived order will be sent back through the notifyOrder callback. Please note 
that there will not be a notifyQuote callback when a quote is cancelled.

virtual bool cancelMultiQuotes(unsigned count,YDCancelQuote cancelQuotes[],const YDExchange 

*exchanges[],const YDAccount *pAccount=NULL)

1

virtual bool cancelQuoteByInstrument(YDCancelQuote *pCancelQuote,const YDInstrument *pInstrument,int 

cancelQuoteByInstrumentType,const YDAccount *pAccount=NULL)

1

virtual void notifyOrder(const YDOrder *pOrder,const YDInstrument *pInstrument,const YDAccount *pAccount)   

{}

1

YD Trading System C++ API Programming Guide

77 / 135

af://n3950
af://n3971
af://n3973
af://n3999


Parameter Field Description

YDCancelQuote AccountRef Account reference No.

  ExchangeRef Exchange reference No.

  QuoteSysID Exchange quote number

  LongQuoteSysID Full-accuracy exchange quote number

  OrderGroupID Order logic group ID

  OrderRef Investor's order reference No.

  ErrorNo Error No.

  IsQuote Is it a notification for quote cancellation

YDExchange   Exchange with order cancellation error

YDAccount   Account for order cancellation error

If the quote cancellation fails, the error information will be sent back through notifyFailedCancelOrder callback. At this time, the 
ErrorNo of YDQuote should be checked for error reasons. Please note that YD cannot ensure a strict correspondence between 
a quote cancellation failure notification and an investors' cancellation instruction in terms of volume and content. It is 
strongly suggested that investors only use the quote cancellation failure notifications for logging. The trading strategy 
should not be dependent on quote cancellation failure notifications but should establish a timeout mechanism after 
cancellation instructions are sent. If no notification on the corresponding change of quote status is received within a set 
period, a new quote cancellation instruction should be sent

The parameters of the above method are described as follows:

Generally, the information sent back due to quote cancellation failure corresponds to the method used for quote cancellation, 
namely:

Filling in QuoteSysID/LongQuoteSysID and OrderGroupID/ OrderRef is meaningless in notifications regarding quote 
cancellation through OrderSysID and LongOrderSysID

Filling in OrderGroupID/OrderRef and QuoteSysID/LongQuoteSysID is meaningless in notifications regarding quote cancellation 
through OrderGroupID and OrderRef

However, under the following circumstances, the notification on failure of quote cancellation using OrderGroupID and OrderRef is 
different from that mentioned above:

Notifications on quote cancellation failures sent by exchanges will not be forwarded to investors

When an order notification has been sent back and errors such as flow control or network disconnection occur during quote 
cancellation, the QuoteSysID and LongQuoteSysID will be filled out in the quote cancellation failure notification 

Therefore, when receiving a quote cancellation failure notification, the notified information should be checked. If OrderGroupID is 0, 
the corresponding order can be found through QuoteSysID or LongQuoteSysID; If OrderGroupID is not 0, the corresponding order 
can be found through OrderGroupID and OrderRef.

Generally, investors use OrderRef to establish an order index. When receiving a quote cancellation error notification with filled out 
QuoteSysID and LongQuoteSysID, the following method can be used to obtain the corresponding OrderRef and OrderGroupID:

7.3.4 Quote modification  

SHFE, INE, DCE, CZCE, CFFEX, SSE and SZSE support quote modification services (quote to cancel, QTC), namely a new quote under 
the same instrument can be made for replacing the previous one in order to reduce cancellations.

In CTP, SHFE and INE do not perform position verification when closing out a position. For example, a market maker has a 
position of 10 lots in a particular instrument. In the scenario where there is already an outstanding bid order to close 8 lots, 
the market maker can directly place a bid order to close 8 lots, achieving the effect of replacing the previous bid order. 
However, due to the lack of support for position verification exemption in closing out orders on other exchanges within CTP, 
YD does not provide special handling for position verification exemption in closing out orders on SHFE and INE. This is not 
conducive to market maker's unified order code. Therefore, YD does not support the excess position replacing order 
functionality on all exchanges. Please note that when the sum of the quantity in the outstanding quote orders and the quantity 
in the replacing orders is less than the total position, the submission of replacing orders is always allowed. For example, a 
market maker has a position of 10 lots in a particular instrument. In the scenario where there is already an outstanding bid 
order to close 4 lots, the market maker can directly place a bid order to close 4 lots, achieving the effect of replacing the 
previous bid order.

When selecting the quote modification service, the investors can directly submit a new quote according to the common quote 
method. The callback means the notification generated for one order cancellation and one quote. Therefore, refer to Quote and 
Quote cancellation for the relevant details.

virtual void notifyFailedCancelQuote(const YDFailedCancelQuote *pFailedCancelQuote,const YDExchange 

*pExchange,const YDAccount *pAccount)

1

virtual const YDExtendedQuote *getQuote(int quoteSysID,const YDExchange *pExchange);

virtual const YDExtendedQuote *getQuote(long long longQuoteSysID,const YDExchange *pExchange);

1

2

YD Trading System C++ API Programming Guide

78 / 135

af://n4065


CFFEX supports multi-level quoting, which means participants can submit quotes at multiple price levels. Therefore, CFFEX supports 
three options for replacing orders: not replacing, replacing with the last order, and replacing with a specified order.Given that other 
exchanges have not implemented multi-level quoting and specified replacing order functionality, the YD system offers only two 
choices: no replacement and replacement with a new order. When quoting, if the 'YDQuote.YDQuoteFlag' is set with the 
'YD_YQF_ReplaceLastQuote' flag, it indicates replacing the last order; If not set, it indicates no replacement, which means multiple-
level quoting will be generated. Previous quote orders can only be canceled by specifying cancellation, and cannot be replaced 
through the submission of a new order.

SSE and SZSE support two types of quote modification: double-side and single-side. In the case of double-side quote modification, 
the buy and sell quantities in the quote modification order must be greater than 0; in the case of single-side quote modification, the 
quantity of the side to be modificated must be greater than 0, and the quantity of the other side must be equal to 0. In single-side 
quote modification, the exchange will traverse all quotes of the same contract in the pending state, and determine the impact on 
the quote modification order by its order type and direction gradually:

If the quote being modificated is a single-side quote and the direction is same as the quote modification order, the quote being 
modificated will be cancelled.

If the quote being modificated is a single-side quote and the direction is opposite to the quote modification order:

If the prices cross, the quote being modificated will be cancelled.

If the prices do not cross, the quote being modificated will remain unchanged.

if the quote being modificated is a double-side quote:

If the side with the same direction as the quote modification order has been traded, it will remain unchanged.

If the side with the same direction as the quote modification order has not been traded, it will be cancelled.

If the side is oppsite to the quote modification order has been traded, it will remain unchanged.

If the side is oppsite to the quote modification order has not been traded:

If the prices cross, the quote being modificated will remain unchanged.

If the prices do not cross, the quote being modificated will remain unchanged.

 

7.4 Combination and decombination position service  
DCE, GFEX, SSE and SZSE do not have provide large-side margin services and only provide deducted margin services relying on 
traditional combined positions. CZCE provides both one-way large-side margin services (under the same instrument) and deducted 
margin services relying on traditional combined positions.

For DCE and GFEX, positions can be combined automatically and traditionally for settlement, so they are combined before opening. 
If there are new positions that meet the definition of traditional combined positions and need to be combined during trading, a 
combination instruction can be used for combination. When closing positions, the DCE and GFEX can perform decombination 
automatically, and therefore no advanced decombination is needed.

For CZCE, positions can be combined automatically for covered call service before settlement, and other service types are allowed 
depending on a successful application. Therefore, positions that have been covered and successfully applied for before opening will 
be combined and the margin will be automatically deducted according to the offset (larger side under the same instrument) during 
trading. When closing, CZCE supports automatic decombination, and therefore no advanced decombination is needed.

For SSE and SZSE, automatic combination is not allowed for settlement unless combination instructions are used during trading. In 
SSE and SZSE, positions must be decombined before closing. Combined positions are not allowed for closing.

YD provides three different methods for sending combination instructions, which are:

Native instruction: ydApi and ydExtendedApi users can call insertCombPositionOrder to send native combination and 
decombination instructions, while ydExtendedApi users can call checkAndInsertCombPositionOrder to send native 
combination and decombination instructions;

Auto instruction: ydExtendedApi users can call autoCreateCombPosition to send an automatic combination instruction;

Auto tool: For using the auto combination tool ydAutoCP to regularly send a combination instruction, which can be 
downloaded from Here or obtained from a broker.

7.4.1 Native instruction  

ydApi and ydExtendedApi users can call insertCombPositionOrder to send native combination and decombination instructions, 
while ydExtendedApi users can call checkAndInsertCombPositionOrder to send native combination and decombination instructions. 
Compared to other combination methods, the native instruction is the freest, because it allows investors to choose instructions for 
combination without priority constraints. Native instruction is also the only one that supports decombination. At the same time, the 
auto instruction and auto tool are developed based on the native instruction.

The parameters of checkAndInsertCombPositionOrder and insertCombPositionOrder are similar, the difference is that 
checkAndInsertCombPositionOrder should be subject to a validity check for input parameters at the API end compared to 
insertCombPositionOrder. If the validity check fails, a "False" will be directly sent back through checkAndInsertCombPositionOrder. 
The error reasons can be obtained via ErrorNo of YDInputOrder instead of the OMS's check, these validity checks are:

Checking the validity of trading direction, hedge flag and combination quantity values

Checking if there are sufficient positions for combination and if there are sufficient traditional combined positions for 
decombination

virtual bool insertCombPositionOrder(YDInputOrder *pInputOrder,const YDCombPositionDef 

*pCombPositionDef,const YDAccount *pAccount=NULL)

virtual bool checkAndInsertCombPositionOrder(YDInputOrder *pInputOrder,const YDCombPositionDef 

*pCombPositionDef,const YDAccount *pAccount=NULL)

1

2

YD Trading System C++ API Programming Guide

79 / 135

af://n4099
https://www.hanlinit.com/downloads/
af://n4112


Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_CombPosition

  OrderRef
Customer order reference No., refer to Normal Order for more details
about the description of OrderRef.

  Direction
YD_D_Make: Combine
YD_D_Split: Decombine

  OrderType 0

  HedgeFlag For filling in YD_HF_Speculation

  OrderVolume

Volume required for combination or decombination.
When combining, the volume for the two legs' traditional uncombined
positions should be higher than that for combination.
When decombining, the volume for traditional combined positions should
be higher than that for decombination.

  CombPositionDetailID
Combination details ID. Only required for decombination in SSE and SZSE.
For other circumstances, it should be 0.

YDCombPositionDef  
Traditional combined position definition pointer for pending combinations,
refer to Traditional combined Position Definition for details.

YDAccount   The given "NULL" means that the current API login account is used

Parameter Description

const int*
combTypes

The type array to be involved in a combination, ended with -1. The combination should be conducted
according to the array sequence and types one by one.
When it is NULL, the sequence of all traditional combined position types of DCE is adopted by default,
namely, from YD_CPT_DCE_FuturesOffset to YD_CPT_DCE_SellOptionsCovered

API local validity checks can help to save time for sending notifications due to invalid fields, but an overhead to each combination 
instruction will be added. However, combination instructions are not sensitive to performance, so it is suggested that all 
ydExtendedApi users who want to use the native instruction send combination instructions through 
checkAndInsertCombPositionOrder.

The calling method for insertCombPositionOrder and checkAndInsertCombPositionOrder is shown below.

After a combination is made or fails, the investors will be notified through the following callback interface.

7.4.1.1 Extended combination notification  

If using YDExtendedListener, investors can receive detailed combination notifications through notifyExchangeCombPositionDetail 
under the following circumstances:

When receiving detailed preday combination information, refer to traditional combined preday position for more details

When a detailed combination changes due to a successful combination or unfreezing instruction service

For the structure of YDExtendedCombPositionDetail, refer to traditional combined preday position.

7.4.2 Auto instruction  

For ydExtendedApi users, in most cases, the function of autoCreateCombPosition can be called to automatically complete 
combinations. Currently, the auto instruction is only supported by DCE and GFEX. For SSE and SZSE, decombination is required first 
for position closing, and the native instruction must be used for decombination. Therefore, for the combination and decombination 
in SSE and SZSE, the native instruction should be used directly.

When the autoCreateCombPosition is called each time, the positions that can be combined can be checked one by one according to 
the combination type sequence specified by combTypes, and under the same combination type, to the priority sequence specified 
by YDCombPositionDef.Priority (the lower the value, the higher the priority). Once the positions that can be combined are found, a 
combination instruction will be sent to the OMS. Please note at most one combination is allowed each time when the 
autoCreateCombPosition is called. In production, a separate thread can be used to continuously call this function at a certain gap. If 
the positions to be combined are found and sent successfully, the corresponding traditional combined position definition will be 
sent back through this function. If the positions to be combined are not found, a "NULL" will be sent back through the function.

The calling method for autoCreateCombPosition is shown below.

After a combination is made or fails, the investors will be notified through the following callback interface.

virtual void notifyCombPositionOrder(const YDOrder *pOrder,const YDCombPositionDef *pCombPositionDef,const 

YDAccount *pAccount) {}

1

virtual void notifyExchangeCombPositionDetail(const YDExtendedCombPositionDetail *pCombPositionDetail)1

virtual const YDCombPositionDef *autoCreateCombPosition(const int *combTypes)1

YD Trading System C++ API Programming Guide

80 / 135

af://n4166
af://n4175


7.4.3 Auto tool  

YD provided an independent auto combination tool namely ydAutoCP for investors early on. This tool can be started up through 
command lines, and after startup, it, at a certain gap, can be used for searching for positions that can be combined and send 
combination instructions. Due to many restrictions and inconvenience in using ydAutoCP, it is suggested that investors use APIs to 
send combination instructions. For the same reason as that for automatic instructions, ydAutoCP only supports the automatic 
combination of DCE.

The example configuration file ydACP.ini for ydAutoCP is as follows:

Except a few obvious parameters, the core parameters are described as follows:

The TimeRange can help to specify the system running time. Because ydAutoCP will disable traditional combination position 
definitions from being involved in the subsequent combinations in case of a combination error and sending traditional 
combination orders during non-trading hours will result in that all combination position definitions be disabled during this 
period of time, when configuring the system, the non-trading hours of exchanges must be avoided. At the same time, the 
operating system running ydAutoCP must be properly timed.

The meaning of the parameter combTypes for CombPositionType and autoCreateCombPosition is the same. Please refer to 
Auto Instruction for the relevant details.

The startup method of ydAutoCP is the following, where config.txt is the configuration file of YD API, and the configuration file 
ydACP.ini of ydAutoCP is loaded by default, so the file name cannot be modified:

Once a traditional combination position definition is disabled in the system, the ydAutoCP must be restarted if a revalidation of this 
definition is expected. The disabled traditional combination position definition can be checked in the log. The following shows an 
example about error messages:

7.5 Exercise and performance  
The following text will provide a detailed introduction to the exercise and performance business of various exchanges. Although this 
article attempts to comprehensively explain the specific business logic, there may be omissions, and as the business of the 
exchanges develops, the following business logic may no longer be in line with the actual exercise and performance business of the 
exchanges. Therefore, the following content cannot be used as the basis for investors to implement exchange exercise and 
performance business, all subject to the announcement of the exchange.

To avoid losses during the exercise and performance process, it is essential to test and verify the exercise and performance 
behavior in the exchange's simulation environment before using the exercise and performance API interface of the YD OMS for 
businesss services in the production environment. YD is not responsible for any losses resulting from misunderstood or untested 
exercise and performance behavior.

virtual void notifyCombPositionOrder(const YDOrder *pOrder,const YDCombPositionDef *pCombPositionDef,const 

YDAccount *pAccount) {}

1

AppID=yd_dev_1.0

AuthCode=ecbf8f06469eba63956b79705d95a603

AccountID=001

Password=001

# time ranges for auto combine position , can be multiple, no such setting indicates selecting at any 

time. Default is no setting

TimeRange=21:00:05-23:29:55

TimeRange=09:00:05-10:14:55

TimeRange=10:30:05-11:29:55

TimeRange=13:30:05-15:29:55

# refresh period, in seconds, default is 10, must be greater than 1

RefreshPeriod=10

# directory to hold log files, default is "ACPLog"

LogDir=ACPLog

# Comb positions types to be processed. If not given, default is all types. Optional values are as 

follow:

# YD_CPT_DCE_FuturesOffset=0

# YD_CPT_DCE_OptionsOffset=1

# YD_CPT_DCE_FuturesCalendarSpread=2

# YD_CPT_DCE_FuturesProductSpread=3

# YD_CPT_DCE_BuyOptionsVerticalSpread=4

# YD_CPT_DCE_SellOptionsVerticalSpread=5

# YD_CPT_DCE_OptionsStraddle=7

# YD_CPT_DCE_OptionsStrangle=8

# YD_CPT_DCE_BuyOptionsCovered=9

# YD_CPT_DCE_SellOptionsCovered=10 

CombPositionType=0,1,2,3,4,5,7,8,9,10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

./ydAutoCP config.txt1

error in handling (pg2302&-eg2303,1) for account 123456781

YD Trading System C++ API Programming Guide

81 / 135

af://n4189
af://n4203


Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_OptionSelfClose

  OrderRef Customer order reference No., see the description of OrderRef in Normal Order for details

  OrderType

YD_ODT_CloseSelfOptionPosition: Requesting the hedging of bidirectional options
positions for ordinary investors.
YD_ODT_ReserveOptionPosition: Abandoning the hedging of bidirectional options
positions for market makers.

  HedgeFlag

Hedge flag
YD_HF_Speculation=1: Speculation
YD_HF_Hedge=3: Hedge
The exchange does not use the hedge flag. The YD system uses the fund account and the
hedge flag to uniquely identify the trading code, so please specify the corresponding hedge
flag.

  OrderVolume  

YDInstrument  
For specifying an option instrument pointer for hedging of pending bi-directional options
position.

YDAccount   The given "NULL" means that the current API login account is used

7.5.1 Exercise and performance of SHFE and INE  

According to the exercise and performance rules of SHFE and INE, investors can settle their options positions before exercise 
through offsetting or holding offsetting positions in two-way options; on the expiration day, the exchange will automatically exercise 
options for the option buyer according to the logic of exercising for in-the-money options and not exercising for out-of-the-money 
options. However, the buyer of an in-the-money option can choose to abandon the exercise, and the buyer of an out-of-the-money 
option can request exercise to override the exchange's automatic exercise logic. On the expiration day, both the option buyer and 
seller can apply for exercise and performance to offset their two-way futures positions. If an investor's position involves the above-
mentioned transactions at the same time, the exchange's processing logic is as follows: first, the offsetting of the two-way option 
positions is processed, followed by the handling of the futures opening and exercise abandonment related to the option exercise 
application. Then, the remaining positions are automatically exercised or abandoned,and finally, the offsetting of the two-way 
futures options after exercise and performance is processed. The above-mentioned transactions are all application-based 
transactions, which means that only capital and position freezing processing is done during trading hours, and the unified 
calculation and processing are carried out by the post-trading settlement system.

Hedging of bi-directional options positions involves applying for offsetting closing or automatic offsetting closing of bi-
directional options positions for the same trade code and contract. For regular investors, hedging of bi-directional options 
positions is not done by default and requires manual application by the investor. For market makers, hedging of bi-directional 
options positions is done by default, and if a market maker does not wish for automatic hedging of bi-directional options 
positions, they can apply for exemption from automatic hedging. The hedging of bi-directional options positions results in a 
deduction from the current options position, incurring trading fees, and an adjustment to the corresponding position volume. 
The application for hedging and the application for waiving the hedging of European options must be submitted before 15:30 
on the expiration date. The application for hedging and the application for waiving the hedging of American options must be 
submitted during trading hours on any trading day before the expiration date and before 15:30 on the expiration date. The 
application applies to specified instruments and quantities under the designated trading code, and the application is only valid 
for the current day.  

Exercise and waiver of exercise refer to the ability of the buyer of European options to submit an exercise or waiver of exercise 
request before 15:30 on the expiration date. The buyer of American options can submit an exercise request during any trading 
session on any trading day before the expiration date, and on the expiration date, they can submit an exercise or waiver of 
exercise request before 15:30. The application applies to specified instruments and quantities under the designated trading 
code, and the application is only valid for the current day.  

Automatic exercise on expiration date refers to the automatic exercise of long option positions for investors who have not 
submitted an exercise or waiver of exercise request within the specified time before the expiration date, and whose options 
have intrinsic value relative to the settlement price of the underlying futures instrument. Other option positions will be 
automatically abandoned.

After exercising, the futures position can be hedged, which means that the option buyer(seller) can apply to hedge and close 
out the futures position obtained through the exercise under the same trading code, or can apply to hedge and close out the 
futures position obtained through exercise under the same trading code with the original futures position in the futures 
market. The hedging quantity shall not exceed the futures position obtained through exercise. The hedging result shall be 
deducted from the current futures position. The application time for European options is before 15:30 on the expiration date; 
the application time for American options is any trading day before the expiration date and before 15:30 on the expiration 
date. The application is for a specified instrument and quantity under a designated trading code, and is only valid for the 
current day. In the exchange interface, the hedging flag for the bidirectional futures position after exercise is specified in the 
exercise instruction. In order to simplify the structure of the YD API, the YD OMS sets the hedging flag for the bidirectional 
futures position after exercise, which investors cannot modify. Therefore, as long as the option buyer sends an exercise 
request to the exchange, it indicates the need for hedging of the bidirectional futures position after exercise. The hedging flag 
for the bidirectional futures position after performance is sent through proprietary instructions.

7.5.1.1 Hedging of bidirectional options positions on SHFE and INE  

The "insertOrder" instruction is used to initiate an application for hedging or abandoning the hedging of bidirectional options 
positions at the exchange. The request parameters are as follows. For the same investor, instrument, OrderType and HedgeFlag, 
only the most recent application record will be retained.

YD Trading System C++ API Programming Guide

82 / 135

af://n4206
af://n4217


Parameter Field Description

YDOrder YDOrderFlag Fixed as YD_YOF_OptionSelfClose.

  OrderLocalID

Local OMS ID. For internal use by the YD OMS, its positive, negative, unique,
incremental and other characteristics may change due to the version of the exchange,
members, and the YD OMS. Please do not use this field as the identification of the
order.

  OrderSysID
Exchange order ID No. If the exchange order ID number exceeds the maximum length
of OrderSysID, part of it will be truncated.

  LongOrderSysID
Full-accuracy exchange order ID No.The exchange order ID number will not be
truncated for the sake of a full-accuracy

  InsertTime

Second counts from the beginning (17:00) to the order submission time of a trading
day. For example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between YD's integral time and reference time, see string2TimeID
and timeID2String of ydUtil.h

  InsertTimeStamp

Millisecond counts from the beginning (17:00) to the order submission time of a trading
day. For example:
500 ms past 21:00 in night trading hours: 3600*(21-17)*1000+500 = 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-17)*1000+500 = 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference time, see
string2TimeStamp and timeStamp2String of ydUtil.h

  OrderStatus
If the application is successful, it will be "YD_OS_AllTraded"; if the application is
unsuccessful, it will be "YD_OS_Rejected".

  ErrorNo
It will be 0 when the trade is made successfully, and the exchange error number when
an error occurs.

YDInstrument  
For specifying an option instrument pointer for hedging of pending bi-directional
options position.

YDAccount   Current API login account.

Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_OptionSelfClose

  OrderRef Customer order reference No., see the description of OrderRef in Normal Order for details

  OrderType Please fill in the corresponding "OrderType" for the hedging application to be cancelled.

  HedgeFlag Please fill in the corresponding "HedgeFlag" for the hedging application to be cancelled.

  OrderVolume Fill in 0 to indicate cancellation of the options hedging application.

YDInstrument  
Designate the pointer to the option instrument for which the pending bi-directional option
position hedging is to be cancelled.

YDAccount   The given "NULL" means that the current API login account is used

The success or failure of the options hedging application will be returned through "notifyOrder". Regardless of success or failure, 
the corresponding order will enter the final state and cannot continue to apply for orders. The values of the "YDOrder" in the return 
are consistent with the "YDInputOrder" in the application, so the table below ignores the same fileds as the YDInputOrder and 
meaningless fields. Investors mainly focus on the "OrderStatus" and "ErrorNo" in the return to understand whether the application 
is successful.

Due to the fact that SHFE and INE retain only the most recent application for the same investor, instrument, order type and hedge 
flag, investors shall withdraw the hedging application for the bi-directional options position by placing an order for the same 
instrument, order flag and hedge flag as the specified bi-directional options position hedging application. In order to comply with 
the characteristics of the exchange's instructions, YD cancels the hedging of the bi-directional option position using an independent 
order from the hedging application for the bi-directional options position. Therefore, the "OrderRef" in the cancellation instruction 
should not be filled with the "OrderRef" in the application instruction to avoid being subject to Monotonic increase check of order 
reference number and Order group, which may result in the failure of the cancellation instruction.

Using the insertOrder command to cancel the application for hedging the bi-directional options position with the exchange, the 
request parameters are as shown in the following table.

The success or failure of canceling the bi-directional option position hedging will be returned through "notifyOrder". Once the 
corresponding order enters the final state, it cannot be further canceled, regardless of success or failure. The values of the 
"YDOrder" in the return should be consistent with the "YDInputOrder" in the application, so the table below ignores the same fields 
as YDInputOrder and meaningless fields. Investors mainly focus on the "OrderStatus" and "ErrorNo" in the return to understand 
whether the application is successful.

YD Trading System C++ API Programming Guide

83 / 135



Parameter Field Description

YDOrder YDOrderFlag Fixed as YD_YOF_OptionSelfClose.

  OrderLocalID

Local OMS ID. For internal use by the YD OMS, its positive, negative, unique,
incremental and other characteristics may change due to the version of the exchange,
members, and the YD OMS. Please do not use this field as the identification of the
order.

  OrderSysID
Exchange order ID No. If the exchange order ID number exceeds the maximum length
of OrderSysID, part of it will be truncated.

  LongOrderSysID
Full-accuracy exchange order ID No.The exchange order ID number will not be
truncated for the sake of a full-accuracy.

  InsertTime

Second counts from the beginning (17:00) to the order submission time of a trading
day. For example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between YD's integral time and reference time, see string2TimeID
and timeID2String of ydUtil.h

  InsertTimeStamp

Millisecond counts from the beginning (17:00) to the order submission time of a trading
day. For example:
500 ms past 21:00 in night trading hours: 3600*(21-17)*1000+500 = 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-17)*1000+500 = 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference time, see
string2TimeStamp and timeStamp2String of ydUtil.h

  OrderStatus
If the application is successful, it will be "YD_OS_AllTraded"; if the application is
unsuccessful, it will be "YD_OS_Rejected".

  ErrorNo
It will be 0 when the trade is made successfully, and the exchange error number when
an error occurs.

YDInstrument  
For specifying an option instrument pointer for hedging of pending bi-directional
options position.

YDAccount   Current API login account.

Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_OptionExecute

  OrderRef
Customer order reference No., refer to Normal Order for more details about the
description of OrderRef

  Direction For filling in YD_D_Sell

  OffsetFlag

For filling in the OffsetFlag of the position corresponding to the exercise
For SHFE and INE, for today's position, fill in "YD_OF_CloseToday", and for yesterday's
position, fill in "YD_OF_CloseYesterday".
For DCE, CZCE, and GFEX, just fill in YD_OF_Close

  OrderType For filling in YD_ODT_Limit

  HedgeFlag
Hedge flag. YD_HF_Speculation=1: Speculation
YD_HF_Hedge=3: Hedge.

  OrderVolume For specifying the volume for exercise

YDInstrument   For specifying the instrument pointer for options to be exercised

YDAccount   The given "NULL" means that the current API login account is used

7.5.1.2 Option exercise of SHFE and INE  

For the sake of easy programming, YD provides parameterized representations for supporting option exercise or not. The 
YDExchange.OptionExecutionSupport is used for supporting option exercise at different levels:

0: Not supported. It is applicable to CFFEX now.

1: Supported, excluding risk control. The so-called "Excluding Risk Control" means excluding money position check and 
freezing. It is unapplicable to any exchange now.

2: Supported, including risk control. The so-called "Risk Control" means money position check and freezing. It is applicable to 
SHFE, INE, DCE, CZCE, GFEX, SSE and SZSE now.

Use the "insertOrder" command to initiate an exercise request to the exchange. The parameter filling method is as shown in the 
table below.

YD Trading System C++ API Programming Guide

84 / 135

af://n4379


Parameter Field Description

YDOrder YDOrderFlag Fixed as YD_YOF_OptionExecute.

  OrderLocalID

Local OMS ID. For internal use by the YD OMS, its positive, negative, unique,
incremental and other characteristics may change due to the version of the exchange,
members, and the YD OMS. Please do not use this field as the identification of the
order.

  OrderSysID
Exchange order ID No. If the exchange order ID number exceeds the maximum length
of OrderSysID, part of it will be truncated.

  LongOrderSysID
Full-accuracy exchange order ID No.The exchange order ID number will not be
truncated for the sake of a full-accuracy.

  InsertTime

Second counts from the beginning (17:00) to the order submission time of a trading
day. For example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between YD's integral time and reference time, see string2TimeID
and timeID2String of ydUtil.h

  InsertTimeStamp

Millisecond counts from the beginning (17:00) to the order submission time of a trading
day. For example:
500 ms past 21:00 in night trading hours: 3600*(21-17)*1000+500 = 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-17)*1000+500 = 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference time, see
string2TimeStamp and timeStamp2String of ydUtil.h

  OrderStatus
If the application is successful, it will be "YD_OS_Queuing"; if the application is
unsuccessful, it will be "YD_OS_Rejected".

  ErrorNo
It will be 0 when the trade is made successfully, and the exchange error number when
an error occurs.

YDInstrument   Pointer to the option instrument pending exercise.

YDAccount   Current API login account.

Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_OptionAbandonExecute

  OrderRef
Customer order reference No., refer to Normal Order for details about the description of
OrderRef

  Direction For filling in YD_D_Sell

  OffsetFlag

For filling in the OffsetFlag of the position corresponding to the exercise
For SHFE and INE, for today's position, fill in "YD_OF_CloseToday",and for yesterday's
position, fill in "YD_OF_CloseYesterday".
For other exchanges, just fill in YD_OF_Close

  OrderType For filling in YD_ODT_Limit

The option exercise notification will be returned through the "notifyOrder". If the option exercise request is successful, the 
notification will show as "pending order"; if the option exercise request fails, the notification will show as "failed order". The values 
of the "YDOrder" in the return are consistent with the "YDInputOrder" in the application, so the table ignores the same fields as the 
YDInputOrder and meaningless fields. Investors are mainly concerned with the "OrderStatus" and "ErrorNo" in the return to 
understand whether the application is successful.

As the exercise request for the option is in pending status after a successful application, it can be canceled using the "cancelOrder" 
function. The usage and notification for canceling exercise requests and cancelling ordinary orders are the same. For details, please 
refer to Order cancellation

7.5.1.3 Abandonment of option exercise of SHFE and INE  

For the sake of easy programming, YD provides parameterized representations for supporting option exercise abandonment or not. 
The YDExchange.OptionAbandonExecutionSupport is used for supporting option exercise at different levels:

0: Not supported. It is applicable to CFFEX, SSE, SZSE, DCE and GFEX now. CFFEX, SSE and SZSE do not support option exercise 
abandonment instruction. DCE and GFEX support abandoning option exercises through YD_YOF_Mark rather than 
YD_YOF_OptionAbandonExecute, refer to the following content for details.

1: Supported, excluding risk control. The so-called "Excluding Risk Control" means excluding money position check and 
freezing. It is unapplicable to any exchange now.

2: Supported, including risk control. The so-called "Risk Control" means money position check and freezing. It is applicable to 
SHFE, INE and CZCE now.

Use the "insertOrder" command to initiate the abandonment of the option exercise request to the exchange. The parameter filling 
method is as shown in the following table.

YD Trading System C++ API Programming Guide

85 / 135

af://n4477


Parameter Field Description

  HedgeFlag

Hedge flag. The definition is different for futures exchanges and stock option exchanges.
For futures exchanges:
YD_HF_Speculation=1: Speculation
YD_HF_Hedge=3: Hedge
For stock option exchanges:
YD_HF_Normal=1: Normal
YD_HF_Covered=3: Covered

  OrderVolume For specifying the volume for exercise

YDInstrument   For specifying the instrument pointer for options to be abandoned.

YDAccount   The given "NULL" means that the current API login account is used

Parameter Field Description

YDOrder YDOrderFlag Fixed as YD_YOF_OptionAbandonExecute.

  OrderLocalID

Local OMS ID. For internal use by the YD OMS, its positive, negative, unique,
incremental and other characteristics may change due to the version of the exchange,
members, and the YD OMS. Please do not use this field as the identification of the
order.

  OrderSysID
Exchange order ID No. If the exchange order ID number exceeds the maximum length
of OrderSysID, part of it will be truncated.

  LongOrderSysID
Full-accuracy exchange order ID No.The exchange order ID number will not be
truncated for the sake of a full-accuracy.

  InsertTime

Second counts from the beginning (17:00) to the order submission time of a trading
day. For example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between YD's integral time and reference time, see string2TimeID
and timeID2String of ydUtil.h

  InsertTimeStamp

Millisecond counts from the beginning (17:00) to the order submission time of a trading
day. For example:
500 ms past 21:00 in night trading hours: 3600*(21-17)*1000+500 = 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-17)*1000+500 = 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference time, see
string2TimeStamp and timeStamp2String of ydUtil.h

  OrderStatus
If the application is successful, it will be "YD_OS_Queuing"; if the application is
unsuccessful, it will be "YD_OS_Rejected".

  ErrorNo
It will be 0 when the trade is made successfully, and the exchange error number when
an error occurs.

YDInstrument   For specifying the instrument pointer for options to be abandoned.

YDAccount   Current API login account.

Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_OptionSelfClose.

  OrderRef
Customer order reference No., refer to Normal Order for details about the description of
OrderRef

  OrderType
YD_ODT_SellCloseSelfFuturesPosition：Hedge performance for bi-directional futures
positions after fulfillment.

The abandonment of the option exercise will be returned through "notifyOrder". If the abandonment of the option exercise request 
is successful, the return will be displayed as pending order; if the abandonment of the option exercise request is unsuccessful, the 
return will be displayed as rejected order. The values of the YDOrder in the return are consistent with those of the YDInputOrder in 
the application, so the table ignores the same fields as the YDInputOrder and meaningless fields. Investors mainly focus on the 
"OrderStatus" and "ErrorNo" in the return to understand whether the application is successful.

After the successful abandonment of the option exercise, the application order is in a pending status. Therefore, if you want to 
cancel the abandonment application, you can use "cancelOrder" to withdraw it. The usage and return of canceling the abandonment 
application and canceling a normal order are the same. Please refer to Order cancellation.

7.5.1.4 Hedge performance for bi-directional futures positions after fulfillment for SHFE and INE  

Use the "insertOrder" command to initiate a request for hedging bi-directional futures positions after fulfillment on the exchange, 
with the following parameters. For the same investor, instrument order type and hedge flag, only the most recent application record 
is retained.

YD Trading System C++ API Programming Guide

86 / 135

af://n4575


Parameter Field Description

  HedgeFlag

Hedge flag. YD_HF_Speculation=1: Speculation
YD_HF_Hedge=3: Hedge
The exchange does not use hedging flags. YD OMS uses the fund account and hedging flag
to uniquely determine the trading code, so please specify the corresponding hedging flag.

  OrderVolume The volume for hedging bi-directional futures positions.

YDInstrument  
Designate the pointer to the option instrument for hedging bi-directional futures positions
after fulfillment.

YDAccount   The given "NULL" means that the current API login account is used

Exchange automatic logic Manual exercise of options Manual abandonment of options The exercise result

Exercise 10 lots Apply for 5 lots Yes Exercise 5 lots

Exercise 10 lots Apply for 5 lots No Exercise 10 lots

Exercise 10 lots Do not apply Yes Not exercise

Exercise 10 lots Do not apply No Exercise 10 lots

Waive exercise Apply for 5 lots Yes Exercise 5 lots

Waive exercise Apply for 5 lots No Exercise 5 lots

Waive exercise Do not apply Yes Not exercise

Waive exercise Do not apply No Not exercise

The notification on hedging bi-directional futures positions after fulfillment, the notification on the cancellation of the application for 
hedging bi-directional futures positions after fulfillment and the notification on the cancellation of the application for hedging bi-
directional futures positions after fulfillment are similar to the Hedging of bidirectional options positions on SHFE and INE, please 
refer to the corresponding content.

7.5.2 Exercise and performance of DCE and GFEX  

According to the exercise and performance rules of DCE and GFEX, investors can settle their options positions before exercise 
through closing out or hedging with bi-directional options positions. On the expiration day, the exchange will automatically exercise 
options for the option buyers based on the logic that in-the-money options are exercised by default, while out-of-the money options 
are not exercised by default. However, in-the-money option buyers can choose to waive their right to exercise, and out-of-the-
money option buyers can request exercise to override the exchange's automatic exercise logic. On the expiration day, the option 
buyer can apply to exercise and hedge the bi-directional futures position. On any trading day, investors can apply to perform and 
hedge the bi-directional futures position, and once the application is successful, it will be permanently effective. If an investor's 
position simultaneously utilizes the adove-mentioned services, the exchange's processing logic is as follows: first, the hedge of the 
bi-directional option position is processed, then the exercise of the option and the opening of the futures position are handled, 
followed by the hedge of the bi-directional futures position after exercise, and finally the hedge of the bi-directional futures position 
after performance. Both the hedge of the bi-directional option position and the abandonment of exercise are special application 
services, and no funds or position freezes are carried out during trading hours; exercise application is a general application service, 
and funds and position freezes are carried out during trading hours.

Hedging of bi-directional option positions refers to the application for hedging and closing out of the bi-directional option 
positions under the same trading code and instrument. It follows the principle of maximum hedging volume (taking the smaller 
of the buying position and selling position) and prioritizes closing speculative positions before closing hedged positions. The 
closing price for the hedging position is the settlement price of the current day. The closing sequence is based on the principle 
of "first in, first out". The transaction is included in the trading volume and trading amount, and transaction fees are charged. 
The position volume is adjusted accordingly. The application can be made during the trading hours of the trading day and from 
15:00 to 15:30 on the expiration day. The application is only valid for the specified instrument under the designated trading 
code on the same day.

Automatic exercise on expiration date refers to the automatic exercise of a call (put) option position if the exercise price is 
lower (higher) than the settlement price of the underlying futures instrument after the market closes on the expiration date. All 
other options will be automatically abandoned. For positions with automatic exercise application by the exchange, investors 
have the option to waive the automatic exercise application. If the investor does not waive the automatic exercise, the 
exchange will submit the exercise application for the entire position (without deducting the exercise application volume already 
submitted by the buyer). If both the exercise application has been submitted and the automatic exercise is not waived, the 
exchange will first process the exercise application submitted by the buyer, and then process the exchange's automatic 
exercise application until the buyer's entire position is exercised. If the automatic exercise is waived, the exchange will not 
submit an exercise application for the instrument on behalf of the buyer. If partial exercise of the position is required, an 
exercise application for the corresponding volume must be submitted and the automatic exercise application canceled (the 
order sequence of submission does not affect the process). For positions with automatic exercise waiver by the exchange, 
investors can apply for manual exercise to override the automatic exercise waiver. The application can be made during the 
trading hours and from 15:00 to 15:30 on the expiration date. The manual exercise application applies to specified instrument 
and volume under a designated trading code and is only valid for the current day. The manual waiver of exercise applies to 
specified instrument under a designated trading code and is also only valid for the current day. Please note that manual 
exercise and manual waiver of exercise can coexist and are not mutually exclusive. Assuming an investor holds 10 instruments, 
the final exercise results under different conditions are shown in the table below. For simplicity, the exercise results do not 
consider situations where exercise is not possible due to insufficient funds, etc.

YD Trading System C++ API Programming Guide

87 / 135

af://n4611


Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_Mark

  OrderRef
Always fill in 0
The OrderRef in the notification is always -1 and cannot be matched with the OrderRef in
the request.

  Direction YD_D_Buy：Initiate an application for hedging of the bi-directional option position.

  OrderType YD_ODT_PositionOffsetMark：Hedging a bi-directional option position.

  HedgeFlag

Hedge flag
YD_HF_Speculation=1: Speculation
YD_HF_Hedge=3: Hedge
The exchange does not use a hedge flag, the YD OMS uses the fund account and the hedge
flag to uniquely determine the trading code, so please specify the corresponding hedge
flag.

YDInstrument   The specified pointer for hedging the pending bi-directional option position.

YDAccount   The given "NULL" means that the current API login account is used

Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_Mark.

  Direction YD_D_Buy：Initiate a request for hedging a bi-directional option position.

  OrderType YD_ODT_PositionOffsetMark：Hedging a bi-directional option position.

  HedgeFlag
Hedge flag.
YD_HF_Speculation=1: Speculation
YD_HF_Hedge=3: Hedge.

  OrderRef -1

  OrderLocalID -1

  OrderSysID 0

  InsertTime -1

The hedging of the bi-directional futures position after exercise refers to the option buyer's ability to apply for hedging and 
closing out the bi-directional futures position under the same trading code after exercising the option. This process must 
adhere to the principle of not exceeding the hedging volume of the futures position obtained from exercise(taking the smaller 
of the exercise opening position and the reverse position), and the speculative position should be closed before the hedging 
position. The closing price for the hedging position is the settlement price of the current day, and the closing sequence follows 
the "first in, first out" principle. Transaction fees are charged, and the position volume is adjusted accordingly. The application 
can be made during the trading hours of the trading day and from 15:00 to 15:30 on the expiration date. The application 
applies to the specified instrument under the designated trading code and is only valid for the current day. In the exchange 
interface, the hedging flag for the bi-directional futures position after exercise is specified in the exercise instruction. In order 
to simplify the structure of the YD API, the YD OMS has fixed the hedging flag for the bi-directional futures position after 
exercise, and investors cannot modify it.

The hedging of the bi-directional futures position after performance refers to the option seller's ability to apply for hedging and 
closing the bi-directional futures position after the performance under the same trading code. The hedging logic of the bi-
directional futures position after the performance is the same as the hedging logic of the bi-directional futures position after 
the exercise. The application time is during the trading hours of the trading day and from 15:00 to 15:30 on the expiration day. 
The application is for the specified trading code and, once successful, it remains permanently valid.

7.5.2.1 Hedging of bidirectional options positions on DCE and GFEX  

Use the "insertOrder" command to initiate a request for hedging the bi-directional options position on the exchange, with the 
following parameters as shown in the table. Please note that for the hedging instructions of bi-directional options positions on DCE 
and GFEX, it is not possible to select a specific seat for order placement. The YD OMS will uniformly designate the order to be sent 
from the lead seat. This is because such orders do not have a system order number or a local order number, and therefore, it is not 
possible to implement any mechanism to identify duplicate receipts. If the all management seat mode is used to receive the full 
flow, all seats will receive the notification, which will cause the YD OMS to generate unrelatable order notifications. Therefore, the 
current implementation is to uniformly send and receive using the lead seat. However, this also brings a problem, if the lead seat is 
not a public seat, then for investors who cannot use the lead seat, they will not be able to issue this instruction. Therefore, for Dalian 
Commodity Exchange and Zhengzhou Commodity Exchange, the lead seat cannot be configured as a dedicated seat.

Due to the special nature of the hedging instructions for the bi-directional option positions of DCE and GFEX, YD cannot associate 
the requests and notifications sent to the exchange. After receiving the notifications from the exchange, YD will generate special 
notifications on its own, as shown in the table below. Therefore, after sending the hedging instructions for the bi-directional option 
positions of DCE and GFEX, investors should not keep the order in the client terminal or wait for a matching notification. Instead, 
after receiving the order notification with YDOrderFlag as YD_YOF_Mark, they should differentiate the specific business and whether 
the instruction was successful or not based on the instrument, exchange, OrderType, and OrderStatus. For the same reason as 
mentioned above, even if the AccountFlag in YDAccount is set as YD_AF_NotifyOrderAccept to receive notifications from the counter, 
the hedging instructions for DCE and GFEX will not send notifications from the counter.

YD Trading System C++ API Programming Guide

88 / 135

af://n4669


Parameter Field Description

  OrderStatus
success：YD_OS_AllTraded
failure：YD_OS_Rejected

  ErrorNo
It will be 0 when the trade is made successfully, and the exchange error number when an
error occurs.

YDInstrument   The hedge instrument pointer for the bi-directional option position.

YDAccount   Current API login account.

Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_Mark

  OrderRef
Always fill in 0
The OrderRef in the notification is always -1 and cannot be matched with the OrderRef in
the request.

  Direction YD_D_Sell：cancel the bi-directional option hedge position request.

  OrderType YD_ODT_PositionOffsetMark：Hedging a bi-directional option position.

  HedgeFlag

Hedge flag
YD_HF_Speculation=1: Speculation
YD_HF_Hedge=3: Hedge
The exchange does not use a hedge flag, the YD OMS uses the fund account and the hedge
flag to uniquely determine the trading code, so please specify the corresponding hedge
flag.

YDInstrument   The specified pointer for hedging the pending bi-directional option position.

YDAccount   The given "NULL" means that the current API login account is used

Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_Mark.

  Direction YD_D_Sell：Cancel the application for hedging of the bi-directional option position.

  OrderType YD_ODT_PositionOffsetMark：Hedging a bi-directional option position.

  HedgeFlag
Hedge flag.
YD_HF_Speculation=1: Speculation
YD_HF_Hedge=3: Hedge.

  OrderRef -1

  OrderLocalID -1

  OrderSysID 0

  InsertTime -1

  OrderStatus
success：YD_OS_AllTraded
failure：YD_OS_Rejected

  ErrorNo
It will be 0 when the trade is made successfully, and the exchange error number when an
error occurs.

YDInstrument   The hedge instrument pointer for the bi-directional option position.

YDAccount   Current API login account.

Use the "insertOrder" command to cancel the bi-directional option hedge position request at the exchange, with the request 
parameters as shown in the table below.

The cancellation of the bi-directional option hedge position request will result in a success or failure notification through the 
"notifyOrder" command. Once the request is in its final state, it cannot be further cancelled, regardless of whether it was successful 
or not. The values of the corresponding fields in the YDOrder from the notification and the YDInputOrder from the application 
remain consistent. Therefore, the table below omits the same fields as YDInputOrder and meaningless fields. Investors should focus 
on the OrderStatus and ErrorNo in the notification to understand whether the application was successful.

7.5.2.2 Option exercise of DCE and GFEX  

The exercise reporting method for DCE and GFEX is the same as that for SHFE and INE. For details, please refer to the option 
exercise of shfe and ine.

7.5.2.3 Abandonment of option exercise of DCE and GFEX  

Please refer to the following instructions for using insertOrder to initiate an exercise abandonment request to the exchange.

YD Trading System C++ API Programming Guide

89 / 135

af://n4846
af://n4848


Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_Mark

  OrderRef

Customer order reference number
Due to the lack of order-related fields in the upward and downward interfaces for exercise
abandonment in DCE and GFEX, YD is unable to associate the exchange feedback of
exercise abandonment with the corresponding investor order. As a result, the OrderRef
sent by the OMS is always -1, which cannot correspond to the OrderRef in the request.

  Direction YD_D_Buy：Abandon Exercise

  OrderType YD_ODT_OptionAbandonExecuteMark：Abandon Exercise

  HedgeFlag

Hedge flag
YD_HF_Speculation=1: Speculation
YD_HF_Hedge=3: Hedge
The exchange does not use a hedge flag, the YD OMS uses the fund account and the hedge
flag to uniquely determine the trading code, so please specify the corresponding hedge
flag.

YDInstrument  
Specify the pointer to the options instrument for which automatic exercise is to be
abandoned.

YDAccount   The given "NULL" means that the current API login account is used

Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_Mark

  Direction YD_D_Sell：cancel the abandonment of option exercise.

  OrderType YD_ODT_OptionAbandonExecuteMark：abandon option exercise.

  HedgeFlag

Hedge flag
YD_HF_Speculation=1: Speculation
YD_HF_Hedge=3: Hedge
The exchange does not use a hedge flag, the YD OMS uses the fund account and the hedge
flag to uniquely determine the trading code, so please specify the corresponding hedge
flag.

  OrderStatus
success：YD_OS_AllTraded
failure：YD_OS_Rejected

  ErrorNo
It will be 0 when the trade is made successfully, and the exchange error number when an
error occurs.

YDInstrument  
Specify the pointer to the options instrument for which automatic exercise is to be
abandoned.

YDAccount   Current API login account.

Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_Mark

  OrderRef
Always fill in 0
The OrderRef in the notification is always -1 and cannot be matched with the OrderRef in
the request.

Due to the special nature of the cancellation of the abandonment of option exercise instructions of DCE and GFEX, YD cannot 
associate the requests and notifications sent to the exchange. After receiving the notifications from the exchange, YD will generate 
special notifications on its own, as shown in the table below. Therefore, after sending the cancellation of the abandonment of option 
exercise instructions of DCE and GFEX, investors should not keep the order in the client terminal or wait for a matching notification. 
Instead, after receiving the order notification with YDOrderFlag as YD_YOF_Mark, they should differentiate the specific business and 
whether the instruction was successful or not based on the instrument, exchange, OrderType, and OrderStatus. For the same 
reason as mentioned above, even if the AccountFlag in YDAccount is set as YD_AF_NotifyOrderAccept to receive notifications from 
the counter, the cancellation of the abandonment of option exercise instructions of DCE and GFEX will not send notifications from 
the counter.

The cancellation of the abandonment of option exercise instructions will result in a success or failure notification through the 
"notifyOrder" command. Once the request is in its final state, it cannot be further cancelled, regardless of whether it was successful 
or not. The values of the corresponding fields in the YDOrder from the notification and the YDInputOrder from the application 
remain consistent. Therefore, the table below omits the same fields as YDInputOrder and meaningless fields. Investors should focus 
on the OrderStatus and ErrorNo in the notification to understand whether the application was successful.

7.5.2.4 Hedge performance for bi-directional futures positions after fulfillment for DCE and GFEX  

For the sake of simplifying the API, when initiating an instruction for hedge performance, please specify any instrument belonging to 
DCE or GFEX, so that YD can identify the exchange through the instrument.

Please refer to the following method to use the insertOrder command to initiate a bi-directional futures position hedging application 
after fulfillment to the exchange.

YD Trading System C++ API Programming Guide

90 / 135

af://n4922


Parameter Field Description

  Direction YD_D_Buy：Hedging request application

  OrderType
YD_ODT_CloseFuturesPositionMark：Hedging of bidirectional futures positions after
fulfillment.

  HedgeFlag

Hedge flag
YD_HF_Speculation=1: Speculation
YD_HF_Hedge=3: Hedge
The exchange does not use a hedge flag, the YD OMS uses the fund account and the hedge
flag to uniquely determine the trading code, so please specify the corresponding hedge
flag.

YDInstrument   A designated pointer to any instrument on the corresponding exchange.

YDAccount   The given "NULL" means that the current API login account is used.

In the notification on hedging bi-directional futures positions after fulfillment, the exchange does not include specific instruments in 
the notification. Therefore, YD will return the first instrument of the corresponding exchange along with the notification, and 
investors can obtain the exchange of this instrument. The notification on hedging bi-directional futures positions after fulfillment, 
the notification on the cancellation of the application for hedging bi-directional futures positions after fulfillment and the 
notification on the cancellation of the application for hedging bi-directional futures positions after fulfillment are similar to the 
hedging of bidirectional options positions on dce and gfex, please refer to the corresponding content.

7.5.3 Exercise and performance of CZCE  

According to the exercise and performance rules of CZCE, investors can settle their options positions before exercise through 
closing out bi-directional options positions. On the expiration day, the exchange will automatically exercise options for the option 
buyers based on the logic that in-the-money options are exercised by default, while out-of-the money options are not exercised by 
default. However, in-the-money option buyers can choose to waive their right to exercise, and out-of-the-money option buyers can 
request exercise to override the exchange's automatic exercise logic. The exchange's processing logic is as follows: first, process the 
futures opening of the options exercise application and the abandonment of the options exercise application. The above-mentioned 
transactions are all application-based transactions, which means that only funds and positions are frozen during trading hours, and 
they are uniformly calculated and processed by the post-trading settlement system.

Exercise and abandonment of exercise refer to the option buyer's ability to submit exercise or abandonment requests at any 
time during the trading period before the expiration date and on the expiration date. The requests are for the specified 
instrument and volume under a designated trading code, and are only valid for the current day.

Automatic exercise on expiration date means that for option positions that have not had exercise or abandonment requests 
submitted within the specified timeframe at expiration date settlement, the options will be automatically exercised at their 
intrinsic value (futures settlement price) for in-the-money options, and automatically abandoned for out-of-the-money options. 
The specific handling is as follows: for call options (long positions) with a strike price lower than the underlying asset's 
settlement price on the expiration date, they will be automatically exercised; for put options (short positions) with a strike price 
higher than the underlying asset's settlement price on the expiration date, they will be automatically exercised; all other option 
positions will be automatically abandoned. Please note that, due to differences between the closing price and settlement price 
of the underlying futures, variations in transaction costs, and investor judgments on future market trends of the slightly in-the-
money options and the slightly out-of-the-money options, it may be necessary to either abandon slightly in-the-money options 
or exercise slightly out-of-the-money options.

7.5.3.1 Option exercise of CZCE  

The exercise reporting method for CZCE is the same as that of SHFE and INE. For details, please refer to option-exercise-of-shfe-and-
ine. 

7.5.3.2 Abandonment of option exercise of CZCE  

The exercise abandonment reporting method for CZCE is the same as that of SHFE and INE. For details, please refer to 
abandonment-of-option-exercise-of-shfe-and-ine.

7.5.4 Exercise and performance of CFFEX  

According to the exercise and performance rules of the CFFEX, the exchange does not support exercise instructions. On the last 
trading day, CFFEX will automatically exercise all in-the-money options. If you do not wish to exercise, please close out your position 
before the last trading day.

7.5.5 Exercise and performance of SSE and SZSE  

According to the exercise and performance rules of the SSE and SZSE, investors can close out their options positions before 
exercise. On the exercise date, they can apply for exercise and combined exercise, i.e., submit combined exercise instructions. If 
exercise and combined exercise are applied for simultaneously, the processing logic of ChinaClear is as follows: the combined 
exercise instructions are processed first, followed by the non-combined exercise instructions. The above-mentioned transaction are 
all application-based transactions, meaning that only fund and position freezing processing is done during trading hours, and the 
unified calculation and processing are carried out by the post-trading settlement system.

Exercise application refers to the option buyer's ability to submit an exercise application during the period of 15:00-15:30 on 
the exercise date. The application is for the specified instrument and volume under a designated trading code, and it is only 
valid for the same day. The exercise volume for investors should be the number of uncovered long positions(including the 
volume that has been applied for but not yet executed). If exercise is not applied for, it is considered as waiving the right to 
exercise.

YD Trading System C++ API Programming Guide

91 / 135

af://n4959
af://n4966
af://n4968
af://n4970
af://n4972


Parameter Field Description

YDInputOrder YDOrderFlag For filling in YD_YOF_OptionExecuteTogether

  OrderRef
Customer order reference No., refer to Normal Order for more details about the
description of OrderRef

  OrderVolume For specifying the volume for combined exercise.

YDInstrument pInstrument For specifying the pointer of option instrument for combined exercise

  pInstrument2 For specifying the pointer of option instrument for combined exercise

YDAccount pAccount The given "NULL" means that the current API login account is used

Parameter Field Description

YDOrder YDOrderFlag Fixed as YD_YOF_OptionExecuteTogether.

  OrderLocalID

Local OMS ID. For internal use by the YD OMS, its positive, negative, unique,
incremental and other characteristics may change due to the version of the exchange,
members, and the YD OMS. Please do not use this field as the identification of the
order.

  OrderSysID
Exchange order ID No. If the exchange order ID number exceeds the maximum length
of OrderSysID, part of it will be truncated.

  LongOrderSysID
Full-accuracy exchange order ID No.The exchange order ID number will not be
truncated for the sake of a full-accuracy.

  InsertTime

Second counts from the beginning (17:00) to the order submission time of a trading
day. For example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between YD's integral time and reference time, see string2TimeID
and timeID2String of ydUtil.h

Combined exercise (exercise instruction consolidation application) refers to the ability to simultaneously submit exercise 
applications for uncovered long positions of call and put options on the same underlying security that expire on the same day, 
achieving synchronized exercise of call and put options at expiration, improving the efficiency of investors' capital utilization, 
and avoiding overnight risks in the spot market during settlement. Investors can submit consolidated exercise applications 
multiple times, and the cumulative exercise volume should not exceed the net position of the rights held (i.e. the position after 
the corresponding derivative instrument account's expiration combination strategy is released and the rights and obligations 
positions are hedged). If the volume in a particular application exceeds the current net position, only the net position of the 
rights held in that application is valid. The time for submitting consolidated exercise applications is from 9:15 to 9:25, 9:30 to 
11:30, and 13:00 to 15:30 on the exercise day. The option instrument for consolidated exercise must meet the following 
conditions:

The underlying securities of option instruments should be the same, for example, an SSE - SZSE 300ETF option instrument 
and an SSE 50ETF option instrument cannot be submitted together

The exercise price of a put option on a trading day must be higher than the call option and must be subject to an option 
instrument expiring on the very day

The instrument units must be the same. The underlying dividends, etc., may lead to adjustments in the instrument for ETF 
options, which may result in different instrument units for standard instruments and non-standard instruments 
(instruments with non-M codes). However, such non-standard instruments and standard instruments cannot be 
submitted together.

The volume of call/put options to be exercised shall not exceed the net volume of the corresponding instrument-based 
long positions held by investors. The volume of net positions of a trading day should be determined after the termination 
of the combination strategy at the very day. If exceeding the currently available exercise limit, the submitted volume will 
be invalid.

7.5.5.1 Option exercise of SSE and SZSE  

The exercise reporting method for SSE and SZSE is the same as that for SHFE and INE. For more details, please refer to option 
exercise of shfe and ine

7.5.5.2 The combined exercise of SSE and SZSE  

For SSE and SZSE, please refer to the following methods to use the insertOptionExecTogetherOrder and 
checkAndInsertOptionExecTogetherOrder commands to initiate a request for combined exercise application to the exchange, and 
user the cancelOrder command to cancel the combined exercise request.

The notification for combined exercise is returned through notifyOptionExecTogetherOrder. If the combined exercise application is 
successful, the notification will show as pending order. If the exercise application fails, the notification will show as failed order. The 
values of the "YDOrder" and the "YDInputOrder" for the same fields in the response are consistent. Therefore, the table ignores the 
same fields as the YDInputOrder and meaningless fields. Investors mainly focus on the OrderStatus and ErrorNo in the notification 
to understand if the application is successful.

YD Trading System C++ API Programming Guide

92 / 135

af://n4988
af://n4990


Parameter Field Description

  InsertTimeStamp

Millisecond counts from the beginning (17:00) to the order submission time of a trading
day. For example:
500 ms past 21:00 in night trading hours: 3600*(21-17)*1000+500 = 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-17)*1000+500 = 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference time, see
string2TimeStamp and timeStamp2String of ydUtil.h

  OrderStatus
If the application is successful, it will be "YD_OS_Queuing"; if the application is
unsuccessful, it will be "YD_OS_Rejected".

  ErrorNo
It will be 0 when the trade is made successfully, and the exchange error number when
an error occurs.

YDInstrument pInstrument Pointer to the option instrument pending combined exercise.

YDInstrument pInstrument2 Pointer to the option instrument pending combined exercise.

YDAccount pAccount Current API login account.

Parameter Field Description

YDInputOrder YDOrderFlag Use YD_YOF_Designation

  HedgeFlag Use YD_HF_Speculation

  TransfereePBUID Target PBU of custody Transfer

YDInstrument pInstrument Any SZSE Stock pointer

YDAccount pAccount Pointer to the investor of custody transfer

Exchange Unsupported service

SHFE and INE Settlement price trade TAS instruction

After the successful application for combined exercise of options, the application order is in a pending state. Therefore, if you want 
to cancel the exercise application, you can use the "cancelOrder" command to cancel it. The usage and notification for canceling the 
application for combined exercise of options is the same as canceling a normal order. For more details, please refer to order 
cancellation 

7.6 Custody Transfer  
YD supports the SZSE's custody transfer business, transferring all investors' holdings to other PBUs. It is usually used when investors 
moving out from the YD OMS and can only be used by administrator.

The custody transfer is initiated by insertOrder. The parameter description is shown in the following table.

7.6.1 Unsupported services  

YD aims to support the services needed by investors as much as possible while maintaining the performance. Considering the 
performance and the actual needs of investors using YD products, YD OMSs have not yet supported the following trading business.

If you have actual needs for the above services, just contact YD through a broker. If the needs are indeed universal, YD will try its 
best to help you.

7.7 Trading restrictions  

7.7.1 Trading right  

Considering the appropriate requirements of risk management and investors, brokers should set trading rights at the investor, 
exchange, product and instrument levels; Investors also have a risk control need to proactively set some instrument trading rights. 
Therefore, YD provides four trading right setting sources to meet different risk control setting requirements:

Permanent rights set by administrators: Permanently valid after setting. Only administrators rather than investors are allowed 
for this source setting.

Permanent rights set by investors: Permanently valid after setting. Both administrators and investors are allowed for the 
setting.

Temporary rights set by administrators: Valid for the current trading day after setting. Only administrators rather than 
investors are allowed for this source setting. Currently, they are set after the after-trade risk control rules are triggered to 
ensure that the after-trade risk control rules are only valid on the current trading day.

Temporary rights set by investors: Valid for the current trading day after setting. Both administrators and investors are allowed 
for the setting.

Order cancellation is always allowed regardless of the trading rights of instruments.

Although YD allows the separate setting of trading right sources, an investor's rights on an instrument is the result after 
summarizing the above four sources. The method for investors to set trading rights is as follows:

YD Trading System C++ API Programming Guide

93 / 135

af://n5072
af://n5100
af://n5110
af://n5111


Parameter Description

pAccount Account pointer. The account pointer of the current investor can be obtained through getMyAccount.

pInstrument
Instrument pointer, indicating the right to set an instrument. Please set pProduct and pExchange to
NULL at this time

pProduct
Product pointer, indicating the right to set a product. Please set pInstrument and pExchange to NULL at
this time

pExchange
Exchange pointer, indicating the right to set an exchange. Please set pProduct and pInstrument to NULL
at this time

tradingRight

Rights that should be set, including:
YD_TR_Allow=0: Allowing all trades, which is the most relaxed setting.
YD_TR_CloseOnly=1: Only position closing is allowed.
YD_TR_Forbidden=2: No trades are allowed, which is the most stringent setting.

requestID
For distinguishing between different setting requests, which is usually set to 0. The requestID of a
request can be received through notifyResponse.

tradingRightSource

Trading right setting sources
YD_TRS_AdminPermanent=0: Permanent rights set by an administrator
YD_TRS_UserPermanent=1: Permanent rights set by an investors
YD_TRS_AdminTemp=2: Temporary rights set by an administrator
YD_TRS_UserTemp=3: Temporary rights set by an investor

The parameters involved in the above method are described as follows:

The ultimate rights of an investor in a specific instrument depends on the exchange to which the instrument belongs, the product to 
which the instrument belongs, and the most stringent settings of the instrument. The pseudocodes are expressed as follows:

virtual bool setTradingRight(const YDAccount *pAccount,const YDInstrument *pInstrument,const YDProduct 

*pProduct,const YDExchange *pExchange,   int tradingRight,int requestID=0,int 

tradingRightSource=YD_TRS_AdminPermanent)

1

int getInstrumentTradingRight(YDApi *api, YDInstrument *instrument) 

{

    accountInfo=api->getMyAccount();

        accountExchangeInfo=api->getAccountExchangeInfo(instrument->m_pExchange);

    accountProductInfo=api->getAccountProductInfo(instrument->m_pProduct);

        accountInstrumentInfo=api->getAccountInstrumentInfo(instrument);

        

    accountInfo->TradingRight = max(

        accountInfo->TradingRightFromSource[YD_TRS_AdminPermanent], 

        accountInfo->TradingRightFromSource[YD_TRS_UserPermanent], 

            accountInfo->TradingRightFromSource[YD_TRS_AdminTemp], 

        accountInfo->TradingRightFromSource[YD_TRS_UserTemp]

    );

 

    accountExchangeInfo->TradingRight = max(

        accountExchangeInfo->TradingRightFromSource[YD_TRS_AdminPermanent], 

        accountExchangeInfo->TradingRightFromSource[YD_TRS_UserPermanent], 

            accountExchangeInfo->TradingRightFromSource[YD_TRS_AdminTemp], 

        accountExchangeInfo->TradingRightFromSource[YD_TRS_UserTemp]

    );

  

    accountProductInfo->TradingRight = max(

        accountProductInfo->TradingRightFromSource[YD_TRS_AdminPermanent], 

        accountProductInfo->TradingRightFromSource[YD_TRS_UserPermanent], 

            accountProductInfo->TradingRightFromSource[YD_TRS_AdminTemp], 

        accountProductInfo->TradingRightFromSource[YD_TRS_UserTemp]

    );

    accountInstrumentInfo->TradingRight = max(

        accountInstrumentInfo->TradingRightFromSource[YD_TRS_AdminPermanent], 

        accountInstrumentInfo->TradingRightFromSource[YD_TRS_UserPermanent], 

            accountInstrumentInfo->TradingRightFromSource[YD_TRS_AdminTemp], 

        accountInstrumentInfo->TradingRightFromSource[YD_TRS_UserTemp]

    );

  

        return max(

        accountInfo->TradingRight, 

        accountExchangeInfo->TradingRight, 

            accountProductInfo->TradingRight, 

        accountInstrumentInfo->TradingRight

    );

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

YD Trading System C++ API Programming Guide

94 / 135



Field Description

AccountRef Set the fund account id of the transaction constraint, which must be set

ExchangeRef Exchange id. If not set, it means there is no restriction on the exchange.

ProductRef Product id. If not set, it means there is no restriction on the product

InstrumentRef Instrument id. If not set, it means there is no restriction on the product

IsSetting 0 means set trading constraint, 0 means cancel trading constraint

CashTradingConstraint
Spot trading constraint bitmap：
0：prohibit buying
1：prohibit selling

If a trading right changes during trading, it is usually caused by the administrator's active setting or an after-trade risk control 
trigger. The right change notification can be obtained through the following callback functions. When receiving any of the following 
three callbacks, the pseudocode function getInstrumentTradingRight above should be used to obtain the trading rights for the 
involved instrument:

If closing positions based on an instrument that does not have trading rights, a failed order notification notifyOrder or an error 
quote notification notifyQuote will be received, their ErrorNo is YD_ERROR_NoTradingRight=10.

The trading rights of a combined instrument does not mean using the rights set in the combined instrument, but separately 
determining whether the rights set in the two-leg instrument of the combined instrument meet the trading requirements. Assuming 
that the left and right legs of a combined instrument are Instrument A and B, depending on the rights set by investors in the two 
instruments, the trades under different combined instruments are as follows:

If Instrument A and B allow trades, all trades under the combined instrument will be allowed.

If Instrument A allows trades, and Instrument B allows only position closing, the trades can only be allowed when the two legs 
of the combined instrument are closed at the same time, or the left leg is opened and the right leg is closed.

If Instrument A and B only allow position closing, then the trades can only be allowed when the two legs of the combined 
instrument are opened at the same time. 

If Instrument A allows trades, and Instrument B does not, all trades under this combined instrument will be not allowed. 

7.7.2 Trading Constraint  

In spot business, securities companies will restrict investors' trading and non-trading behaviors, such as prohibiting buying, 
prohibiting selling, prohibiting transfer of custody, etc. In terms of trading, trading constraints can only prohibit selling and allow 
buying, but Trading Right cannot be expressed; in terms of non-trading, the Trading Right mechanism is completely inapplicable. 
Therefore, YD has added a trading constraint function to meet the business needs of securities companies to set trading constraints 
and modify them during trading.

After calling adjustCashTradingConstraint, notifyResponse will be returned to indicate whether it is successful. If successful, 
notifyAdjustCashTradingConstraint callback will be received. If failed, it will not be received. This setting method is only valid for spot 
counters, and can only be called and set by administrators with trading permissions. After setting, it is valid for the current trading 
day.

The structure of YDAdjustCashTradingConstraint is as follows：

ExchangeRef, ProductRef, and InstrumentRef define the scope of contracts that are subject to trading constraints. For example:

If only ExchangeRef is set, all contracts belonging to the exchange are subject to trading constraints

If only ProductRef is set, all contracts belonging to the product are subject to trading constraints

If only InstrumentRef is set, only this contract is subject to trading constraints

If none of ExchangeRef, ProductRef, and InstrumentRef are set, all contracts are subject to trading constraints

Generally speaking, after setting InstrumentRef, it is not necessary to set ExchangeRef and ProductRef. After setting ProductRef, it is 
not necessary to set ExchangeRef. If a fine-grained scope is set and then a coarse-grained scope is set, it is necessary to ensure that 
they are logically consistent, otherwise the setting will fail. For example, if ExchangeRef is set to the Shanghai Stock Exchange, but 
InstrumentRef is set to the Shenzhen Stock Exchange, the setting will fail.

After defining the setting scope, the setting method for each contract depends on the value of IsSetting. Assume that an investor's 
current trading constraint on a contract is to prohibit selling but allow buying (the investor's current trading constraint setting can 
be obtained from YDExtendedAccountInstrumentInfo.CashTradingConstraint), that is, 0b10. The following demonstrates the effects 
of different setting methods:

virtual void notifyAccount(const YDAccount *pAccount)

virtual void notifyAccountExchangeInfo(const YDAccountExchangeInfo *pAccountExchangeInfo)

virtual void notifyAccountProductInfo(const YDAccountProductInfo *pAccountProductInfo)

virtual void notifyAccountInstrumentInfo(const YDAccountInstrumentInfo *pAccountInstrumentInfo)

1

2

3

4

// Trading Constraint

virtual bool adjustCashTradingConstraint(const YDAdjustCashTradingConstraint 

*pAdjustCashTradingConstraint,int requestID=0)

// Adjust Cash Trading Constraint

virtual void notifyAdjustCashTradingConstraint(const YDAdjustCashTradingConstraint 

*pAdjustCashTradingConstraint)

1

2

3

4

5

YD Trading System C++ API Programming Guide

95 / 135

af://n5167


IsSetting=1, CashTradingConstraint=0b1 or 0b11, if the setting is successful, the investor's trading constraint is 0b11

IsSetting=0, CashTradingConstraint=0b10 or 0b11, if the setting is successful, the investor's trading constraint is 0b0

7.7.3 Order count and cancellation count limitation  

By default, YD does not control the number of orders and cancellations by investors. However, considering the upper limit of the YD 
OMS's in-memory database, one of the in-memory database's table reaches the upper limit, the entire YD OMS will be unavailable. 
In order to avoid a sudden increase of the trade volume caused by abnormal trades of some investors from affecting other 
customers at the OMS, brokers can set a limit on the order count for each investor. 

The order count is controlled by the fund account. If an investor establishes more than one connection, the trade volume of all 
connections can be calculated in summary. Normal orders sent to the exchange and receiving a notification from the exchange will 
increase the investor's order volume. Quotes, cancellations, derived orders, and failed orders returned by the YD OMS will not be 
counted in the order volume.

For the current version, The upper limit for database orders and trades is 16.77 million, and the upper limit for quotes is 8.38 
million. If there are changes in the business and normal operations require more space, YD can expand at any time.

The order count limit can be found through YDAccount.MaxOrderCount. The cancellation limit can be found in 
YDAccount.MaxCancelCount. If the value is -1, it means no limit, which is made by default.

For investors using ydExtendedApi, the total order count for the current account can be queried through 
YDExtendedAccount.UsedOrderCount. If an investor has established more than one connection through the fund account, the 
YDExtendedAccount.UserdOrderCount will contain the number of reports for all connections. Investors' total cancellation count is 
only recorded on the counter side and cannot be viewed through the API. Additionally, the cancellation table is cleared after the 
counter restarts, so the total cancellation count for investors will also be reset to zero due to the restart.

After the investor makes the order count reach the upper limit of the account, for the next order, a YD_ERROR_TooManyOrders=36 
error will be sent back through notifyOrder. After an investor reaches the cancellation limit for their account, the next order will 
receive a YD_ERROR_TooManyCancels=89 error in the notifyFailedCancelOrder notification. In order to prevent the OMS space from 
being occupied by excessive and abnormal orders, if the investor keeps conducting the order service, the orders will be directly 
discarded by the OMS without sending back any error notification. The YD_ERROR_TooManyOrders=36 and 
YD_ERROR_TooManyCancels=89 error must be checked, and the order logic must be stopped or adjusted after receiving the error 
notificaiton. If you have any questions, just contact the broker.

If the OMS memory database resources are exhausted, investors will receive a YD_ERROR_MemoryExceed=7 error for any order 
through notifyOrder.

7.7.4 Login count limit  

By default, the count of login connections for a fund account is not limited by YD OMSs, and investors can log in to YD OMSs 
unlimitedly with one account. However, excessive connections may cause the TCP down-bound thread to always be busy issuing the 
down-bound flow, which is unfavorable to the efficient service of YD OMSs. In order to avoid affecting the performance of the OMSs 
due to excessive connections, brokers can set a login count limit for each investor.

The total login count can be shown through YDAccount.MaxLoginCount. If this value is -1, it means no limit, which is made by 
default. The current login count can be shown through YDAccount.LoginCount.

After an investor makes the order count reach the upper limit for his account, a YD_ERROR_TooManyRequests=20 error will be sent 
back through notifyLogin when logging in to the account next time.

For more information about multiple connections, refer to Multiple Connections for more details.

7.7.5 Self-trade check  

In order to avoid being restricted from trading by exchanges due to investors' self-trades, YD OMSs are provide with a self-trade 
check function. YD's self-trade check function has been optimized, so it is unnecessary to disable the trade check function due to 
performance concerns.

This function is enabled by default. If an investor has already performed a check in the strategy program, he/she can ask a broker to 
help disable the self-trade check function under his account. The investor can check the YDAccount.AccountFlag for a set 
YD_AF_DisableSelfTradeCheck flag. If yes, it means that the self-trade check function under this account has been disabled.

The exchanges specify that a self-trade can be only made when the price of a price-limited order overlaps with that of a pending 
price-limited order. Therefore, market orders, FAK orders and FOK orders are not involved in YD's self-trade check logic. If the 
trading prices of a price-limited order and the existing pending order do not overlap, they will not be considered as self-traded. For 
example, under an instrument, if a sell order price is CNY 10, and the quote of a buy order is CNY 11 at this time, it will be 
considered as a self-trade by the system, while if the quote of the buy order is CNY 9, it will not be considered as a self-trade.

SHFE, INE, DCE, CZCE, and CZEX are exempt from self-matching during the call auction. As a result, orders placed by the 
aforementioned exchanges during the call auction will not be identified as self-trades by the YD OMSs.

If the error of "1138 order triggered self-trade" is encountered during the trading in CFFEX, it means that the broker has 
enabled the "Self-trade prevention function" applied for to CFFEX. This function can be used to check whether there is a price 
overlap between a FAK/FOK order and a price-limited order under the same trading code. If there is an overlap, it will be 
intercepted by the exchange. The self-trade prevention function is provided by CFFEX to brokers. After being enabled, it can be 
used for all trading codes of brokers and cannot be set separately for investors. Although the self-trade prevention behavior of 
FAK/FOK orders can be intercepted through the self-trade prevention function, it does not mean that the self-trades caused by 
FAK/FOK orders can be determined as the self-trade behavior by the regulatory department of CFFEX. For the Measures for 
Administration of Abnormal Trades in Financial Futures Exchanges of China, it is clearly stated in the relevant regulatory 
standard and processing program for stock index options that when counting customer's self-trades, frequent order 
submissions / cancellations and large-volume order submissions / cancellations, the self-trade behavior caused by all real-time 
trades or price-limited cancellation instructions, real-time remaining price-limited cancellation instructions and market orders 
are excluded in the self-trade count.

YD Trading System C++ API Programming Guide

96 / 135

af://n5211
af://n5220
af://n5225


Although some exchanges grant investors a certain amount of self-trade exemption, considering that the self-trade check is 
conducted based on investors' trading codes, if the trading code of an investor causes a self-trade due to trading via different 
brokers, it will also be included in a self-trade by exchanges, and the control of such self-trade is relatively difficult. Considering 
protecting investors' interests, in order to leave the exemption for uncontrollable self-trades under the same trading code during 
trading via different brokers, YD OMSs do not allow any potential self-trade orders, and all behaviors detected and considered by 
the system as potential self-trades will be directly rejected by OMSs.

If any order is considered as involved in a self-trade, a YD_ERROR_PossibleSelfTrade=25 error will be sent back through notifyOrde.

7.7.5.1 Self-trade check of CFFEX quote  

Because CFFEX supports multi-level quotes, self-trade check can be very complicated. To ensure no self-trade occurs: When 
modifying the specific quote, the self-trade check will skip on the quote being modified while other quotes and specific orders will 
still be checked if they might be self-traded with the new quote; When modifying the last quote, the self-trade check will check all 
quotes and specific orders if they might be self-traded with the new quote since there is no way for the OMS to know what is the last 
quote that the exchange received.

There are several reasons that YD OMS can not know the last quote that the exchange received, including but not limited to:

Investors send quotes in two OMS at the same time.

Investors send quotes in one OMS continuously, but the sequence that the OMS receives is not the same as the sequence that 
is sent to the exchange. For example, send three orders one after another: Normal quote A, modification last quote B, and 
normal quote C. Suppose quote A and quote B will not pass the self-trade check. If using the self-trade check rule of the specific 
quote, quote A will be skipped because it is being modified; thus, quote B can be sent, quote C is also sent because it will pass 
the self-trade check with both quote A and quote B. However, the actual sequence that is sent to the exchange is A-C-B caused 
by reasons such as system internal scheduling or order blocking. Since the last quote when the exchange received quote B is 
quote C, quote C will be replaced. Thus, quote A and quote B will be self-traded.

Although the above reasons are valid theoretically, they are unlikely to occur in real trading scenarios. In most cases, investors don't 
trade the same instrument at two different OMS, nor do they mix normal quotes with modified last quotes. Stock index market 
makers will not build multi-level quotes and all quotes will be marked with a modify-last-quote flag, thus there will be no potential 
self-trading problems. In most cases, treasury bond derivatives market makers do build multi-level quotes but they only use normal 
quotes and modify-specific quotes, thus there will also be no potential self-trading problems. Therefore, when investors believe that 
there is no potential self-trading problem in their quote behavior, they can ask brokers to enable the CFFEX's relaxed self-trading 
check function. When this function is on, CFFEX's modificate-last-quote will not be checked for self-trading with other quotes, but 
CFFEX's modificate-last-quote still will be checked for self-trading with other orders, which is the same as other exchanges' self-trade 
check rule. Relax self-trading check function will not affect the modify-specific quote's check rule. 

Investors can check the YD_AF_RelaxSelfTradeCheckForQuote flag through YDAccount.AccountFlag to determine whether this 
feature is enabled.

7.7.6 Related Account ID  

According to regulatory requirements, when exchanges implement the management rules and regulations such as position limits, 
transaction limits, and abnormal trading behaviors(self-trading amount, order amounts, large-value-cancel orders amount, intraday 
open volume), all related accounts' trade and position should be treated as one's. To help brokers and investors fulfill their 
regulatory obligations, starting at the 1.386 version, YD OMS supports set accounts to related. Related accounts should be set 
according to broker, regulatory requirements, or investors; otherwise, YD OMS will not assume the accounts are related to each 
other.

YD supports the self-trade check based on related accounts: All related accounts will be treated as one when making a self-trade 
check. If one of the related accounts' self-trade check function is off, it will not be checked with other related accounts.

Since other amount limits of related accounts can be achieved through setting amount limits on each account, they are not 
supported in the related accounts function. If you have any support needs, please contact us.

Related accounts' account information is only saved locally, and will not be sent through API. Investors may consult their brokers for 
specific settings.

7.7.7 Monotonic increase check of order reference number  

In previous API versions, there were no increase requirements for OrderRef for up-bound instructions such as orders and quotes, 
and investors could set OrderRef as needed. During the production, the UDP interfaces of YD OMSs have ever received a large 
number of repeated orders due to network reasons, affecting investors trades.

In order to avoid such problems, it is suggested that investors use non-zero order groups to submit orders and avoid repeated 
orders through the check function. Refer to Order Group for details.

In previous API versions, in order to solve the above problems, YD has enabled the order reference number check function for 
each new account on the management ends by default. The OMSs could be used to check whether the OrderRef of investors 
with this function enabled is monotonically increasing. If a non-monotonic increase order is received through OrderRef, an 
error with the ErrorNo being YD_ERROR_InvalidOrderRef=78 will be sent back.

The scope of monotonic increase check for order reference numbers is limited to API instances, namely, orders submitted 
under the same API instance require a monotonic increase, but no restrictions are made for the OrderRef of orders among 
different API instances created under the same account. Therefore, under multiple connections, using the last few digits of the 
OrderRef as the SessionID is still valid. Raw protocol orders are checked as one separate source and do not conflict with API's 
UDP orders. If an OMS is restarted (e.g. starting day trading) while the client is not restarted because of the enabled HA, the 
order reference number can start from the beginning.

Investors can check the YD_AF_OrderRefCheck flag for having been set for YDAccount.AccountFlag to make sure that this 
function has been enabled. If this flag is set, it means that the monotonic increase check function for order reference numbers 
has been enabled.

YD Trading System C++ API Programming Guide

97 / 135

af://n5234
af://n5244
af://n5249


In order to avoid unnecessary repeated checks, it is suggested that investors disable the above-mentioned order reference 
number check function when conducting order services through non-zero order groups. If an investor still conducts order 
services through an order group with the reference number being 0 and does not want the order reference number check to 
affect the coding logic of the existing OrderRef, he/she can also ask the broker to turn off the order check On/Off under 
his/her account.

7.7.8 Counter flow control  

To prevent the concentration of orders from certain investors from triggering seat flow control and affecting the normal trading of 
other investors on the same counter, brokers can implement counter flow control to limit the speed at which investors send 
instructions to the counter per second. The flow control is applied collectively by calculating the total number of login connections 
from multiple sessions under the same funding account. The following instructions sent by investors to the counter will be included 
in the flow control, including order submission, order cancellation, RFQ, combination and decombination, and exercise and 
fulfillment instructions. Regardless of whether the instructions are rejected by the counter, they will be counted in the flow control. 
Each order submission and cancellation included in a batch order submission and cancellation instruction is counted separately in 
the counter flow control. The following two scenarios are not affected by counter flow control:

Administrators can trade on behalf of investors at the counter, including scenarios such as forced liquidation and forced 
reduction will be implemented for extreme market conditions or when investors encounter technical malfunctions, 
administrators assist in closing positions or canceling orders. In order to quickly mitigate risks, the trading instructions from 
administrators are not counted in the counter flow control.

Considering that market makers at the counter are usually exclusive, the quote and quote cancellation instructions from 
market makers are not counted in the counter flow control.

Investors can obtain the counter flow control threshold from YDAccount.MaxRequestSpeed. If the threshold is set to -1, it indicates 
no counter flow control. When an investor's instruction is subject to counter flow control, the ErrorNo in the response will be 
YD_ERROR_AccountRequestTooFast=24.

7.8 Trading information query  
ydApi cannot be used for storing flows, so the following query function can only be used under ydExtendedApi.

Query statements are subject to slow calling and should not be called under trading threads. Frequent query statement calling is 
not suggested for fear of system lagging.

7.8.1 Order query  

The above method can be used to query orders with received notifications from exchanges or quote derived orders. All orders 
submitted through the insertOrder series order submission method can be queried through this function. By default, normal orders 
can be queried, and other types of orders can be queried by setting the YDOrderFlag.

Orders submitted using checkAndInsertOrder of ydExtendedApi can be queried through the above two methods. As long as 
checkAndInsertOrder and checkAndInsertQuote calls are completed, they can be queried through these two methods without 
receiving any exchange's notification. Among them, getOrder can be used to query orders except for those quote derived ones, 
while getQuoteDerivedOrder can be used to query quote derived orders. Compared to getOrder, order direction parameters are 
added to make a distinction between derived buy and sell orders under two-sided quote.

YD provides the above-mentioned two methods for multi-query of orders with received notifications from exchanges. Their 
query criteria are used in the same way. The pseudo code logic for determining whether a certain order meets the query criteria is 
as follows:

/// getOrder by orderSysID can only be used for orders have been accepted by exchange

virtual const YDExtendedOrder *getOrder(int orderSysID,const YDExchange *pExchange,int 

YDOrderFlag=YD_YOF_Normal)

virtual const YDExtendedOrder *getOrder(long long longOrderSysID,const YDExchange *pExchange,int 

YDOrderFlag=YD_YOF_Normal)

1

2

3

/// getOrder by orderRef can only be used for orders using checkAndInsertOrder

virtual const YDExtendedOrder *getOrder(int orderRef,unsigned orderGroupID=0,const YDAccount 

*pAccount=NULL)=0;

/// getQuoteDerivedOrder can only be used for orders derived oder by using checkAndInsertQuote

virtual const YDExtendedOrder *getQuoteDerivedOrder(int orderRef,int direction,unsigned 

orderGroupID=0,const YDAccount *pAccount=NULL);

1

2

3

4

5

/// orders must have spaces of count, return real number of orders(may be greater than count). Only 

partial will be set if no enough space. Only orders accepted by exchange can be found in this function

virtual unsigned findOrders(const YDOrderFilter *pFilter,unsigned count,const YDExtendedOrder 

*orders[])=0;

/// User should call destroy method of return object to free memory after using following method

virtual YDQueryResult<YDExtendedOrder> *findOrders(const YDOrderFilter *pFilter);

virtual YDQueryResult<YDExtendedOrder> *findPendingOrders(const YDOrderFilter *pFilter);

1

2

3

4

5

6

if YDOrder.OrderSysID < 0

    return false

if YDOrder.YDOrderFlag not in YDOrderFilter.YDOrderFlags

    return false

1

2

3

4

5

6

YD Trading System C++ API Programming Guide

98 / 135

af://n5257
af://n5265
af://n5268


Parameter Field Description

YDOrderFilter StartTime

The start time in the form of TimeID. -1 means unlimited. See the following example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between TimeID and reference time, see string2TimeID and
timeID2String of ydUtil.h

  EndTime

The end time in the form of TimeID. -1 means unlimited. See the following example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between TimeID and reference time, see string2TimeID and
timeID2String of ydUtil.h

  YDOrderFlags

For setting the flag bits of YDOrderFlag to query. More than one flag bit can be set.
For example, when querying normal and combined orders, the following expression
setting can be used:
1<<YD_YOF_Normal | 1<<YD_YOF_CombPosition

  pCombPositionDef
Definition traditional combined positions. For YD_YOF_CombPosition orders, only this
parameter and pExchange can be checked. When set to NULL, it means that no limit
will be made.

  pInstrument
Instrument pointer. It is valid for non-YD_YOF_CombPosition orders. When set to
NULL, it means that no limit will be made.

  pProduct
Product pointer. It is valid for non-YD_YOF_CombPosition orders. When set to NULL, it
means that no limit will be made.

  pExchange Exchange pointer. When set to NULL, it means that no limit will be made.

  pAccount The "Investor" should always be set to NULL

Each field to be filled out is described as follows:

The first method requires investors to allocate a fixed-length YDExtendedOrder pointer array in advance. If the pre-allocated length 
is not enough for the space, only the pre-allocated array length orders can be filled out. Whether the pre-allocated length is enough 
or not for the space, the return values regarding this method are the total orders meeting the query criteria. Investors, relying on 
this, can call findOrders(pFilter, 0, NULL) to quickly obtain the total orders meeting the criteria.

The advantage of this method is that when there are not many orders and the length of the pre-allocated array is enough, the 
pre-allocated pointer array can be reused without allocating for each query;

The disadvantage of this method is that if there are many orders, it may need to be called twice (the first time aims to obtain 
the total orders, the second time, to allocate the array that can include all orders before calling again) to fully obtain all orders 
meeting the criteria.

The second method can help investors allocate a space for all orders meeting the criteria. However, the allocated space, after being 
used, should be destroyed by investors actively by calling YDQueryResult.destory(). Compared with the first method:

The advantage of this method is that all orders can be notified by one call

The disadvantage of this method is that the investors need to actively release the space allocated according to this method, 
and each call will lead to the allocation of a new space, however, frequent allocation and release are very unfriendly to the 
cache.

if YDOrderFilter.StartTime >= 0 and YDOrder.InsertTime > YDOrderFilter.StartTime

    return false

if YDOrderFilter.EndTime >= 0 and YDOrder.InsertTime < YDOrderFilter.EndTime

    return false

if YDOrderFilter.pExchange != NULL and YDOrderFilter.pExchange != YDOrder.pExchange

    return false

if YDOrder.YDOrderFlag ==  YD_YOF_CombPosition

    if YDOrderFilter.pCombPositionDef != NULL and YDOrderFilter.pCombPositionDef != 

YDOrder.pCombPositionDef

        return false

else

    if YDOrderFilter.pInstrument != NULL and YDOrderFilter.pInstrument != YDOrder.pInstrument

        return false

    if YDOrderFilter.pProduct != NULL and YDOrderFilter.pProduct != YDOrder.pProduct

        return false

return true

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

YD Trading System C++ API Programming Guide

99 / 135



Parameter Field Description

YDTradeFilter StartTime

The start time in the form of TimeID. -1 means unlimited. See the following example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between TimeID and reference time, see string2TimeID and
timeID2String of ydUtil.h

  EndTime

The end time in the form of TimeID. -1 means unlimited. See the following example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between TimeID and reference time, see string2TimeID and
timeID2String of ydUtil.h

  pInstrument Instrument pointer. When set to NULL, it means that no limit will be made.

  pProduct Product pointer. When set to NULL, it means that no limit will be made.

  pExchange Exchange pointer. When set to NULL, it means that no limit will be made.

  pAccount The "Investor" should always be set to NULL

7.8.2 Trade query  

The method for multi-query of trades is similar to that of Order Query. Please refer to Order Query for the details. The pseudocode 
logic for determining whether a trade meets the query criteria is as follows:

Each field to be filled out is described as follows:

7.8.3 Quote query  

The above method can be used to query quotes with received notifications from exchanges. All quotes submitted through the 
insertQuote series quote service method can be queried through this function.

Quotes submitted using checkAndInsertQuote of ydExtendedApi can be queried through the above method. As long as 
checkAndInsertQuote calls are completed, they can be queried through these two methods without receiving any exchange's 
notification. 

/// trades must have spaces of count, return real number of trades(may be greater than count). Only 

partial will be set if no enough space

virtual unsigned findTrades(const YDTradeFilter *pFilter,unsigned count,const YDExtendedTrade *trades[]);

/// User should call destroy method of return object to free memory after using following method

virtual YDQueryResult<YDExtendedTrade> *findTrades(const YDTradeFilter *pFilter);

1

2

3

4

5

if YDTradeFilter.StartTime >= 0 and YDTrade.InsertTime > YDTradeFilter.StartTime

    return false

if YDTradeFilter.EndTime >= 0 and YDTrade.InsertTime < YDTradeFilter.EndTime

    return false

if YDTradeFilter.pInstrument != NULL and YDTradeFilter.pInstrument != YDTrade.pInstrument

    return false

if YDTradeFilter.pProduct != NULL and YDTradeFilter.pProduct != YDTrade.pProduct

    return false  

if YDTradeFilter.pExchange != NULL and YDTradeFilter.pExchange != YDTrade.pExchange

    return false

  

return true

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

/// getQuote by quoteSysID can only be used for quotes have been accepted by exchange

virtual const YDExtendedQuote *getQuote(int quoteSysID,const YDExchange *pExchange)

virtual const YDExtendedQuote *getQuote(long long longQuoteSysID,const YDExchange *pExchange)

1

2

3

/// getQuote by orderRef can only be used for quotes using checkAndInsertQuote

virtual const YDExtendedQuote *getQuote(int orderRef,unsigned orderGroupID=0,const YDAccount 

*pAccount=NULL);

1

2

/// quotes must have spaces of count, return real number of quotes(may be greater than count). Only 

partial will be set if no enough space. Only quotes accepted by exchange can be found in this function

virtual unsigned findQuotes(const YDQuoteFilter *pFilter,unsigned count,const YDExtendedQuote *quotes[]);

/// User should call destroy method of return object to free memory after using following method

virtual YDQueryResult<YDExtendedQuote> *findQuotes(const YDQuoteFilter *pFilter);

virtual YDQueryResult<YDExtendedQuote> *findPendingQuotes(const YDQuoteFilter *pFilter);

1

2

3

4

5

6

YD Trading System C++ API Programming Guide

100 / 135

af://n5326
af://n5360


Parameter Field Description

YDTradeFilter StartTime

The start time in the form of TimeID. -1 means unlimited. Any derived order of a quote that
is later than the start time can be considered as valid.
See the following example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between TimeID and reference time, see string2TimeID and
timeID2String of ydUtil.h

  EndTime

The end time in the form of TimeID. -1 means unlimited. Any derived order of a quote that is
earlier than the start time can be considered as valid.
See the following example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between TimeID and reference time, see string2TimeID and
timeID2String of ydUtil.h

  pInstrument Instrument pointer. When set to NULL, it means that no limit will be made.

  pProduct Product pointer. When set to NULL, it means that no limit will be made.

  pExchange Exchange pointer. When set to NULL, it means that no limit will be made.

  pAccount The "Investor" should always be set to NULL

The method for multi-query of quotes is similar to that of Order Query. Refer to Order Query for the details. The pseudocode logic 
for determining whether a quote meets the query criteria is as follows:

Each field to be filled out is described as follows:

7.9 Trading segment  
YD supports sending summarized and detailed trading segment announcements:

Summarized trading segment announcements are those showing continuous information about trading segments. In order to 
reduce the communication traffic and the impact on API, summarized trading segment announcements only show the different 
time points for changing status announced by client exchanges. If several events occur at the same time, only the first one will 
be sent, namely for events occurred at the same time, only the first one will be pushed.

Detailed trading segment announcements are those that are not sent by default. Trading segment announcements of some 
exchanges are made based on instruments, so a large number of announcements can be sent to all investors at the same time, 
which can cause Internet congestion if some notifications regarding orders are sent at this time. Therefore, detailed trading 
segment announcements should be used prudently. Once this function is enabled, all investors using the same OMS will 
receive detailed trading segment announcements. This function can be checked for being enabled at an OMS through 
TradingSegmentDetail of SystemParam. Refer to System Parameters for details.

7.9.1 Summarized trading segment  

The summarized trading segment information can be sent back through the following callback function. The segmentTime means 
the count of seconds from the beginning of a trading day to that time. For its coding method, refer to Order Notification for more 
details about the relevant description for InsertTime.

The following shows different time points for changing trading statuses of current exchanges, which are only used for reference. 
The exchanges are subject to change without notice. The actual receiving time points during production shall prevail.

if YDQuote.OrderSysID < 0

    return false

if YDQuoteFilter.StartTime >= 0 and (any DerivedOrder of YDQuote).InsertTime > YDQuoteFilter.StartTime

    return false

if YDQuoteFilter.EndTime >= 0 and (any DerivedOrder of YDQuote).InsertTime < YDQuoteFilter.EndTime

    return false

if YDQuoteFilter.pInstrument != NULL and YDQuoteFilter.pInstrument != YDQuote.pInstrument

    return false

if YDQuoteFilter.pProduct != NULL and YDQuoteFilter.pProduct != YDQuote.pProduct

    return false  

if YDQuoteFilter.pExchange != NULL and YDQuoteFilter.pExchange != YDQuote.pExchange

    return false

  

return true

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

virtual void notifyTradingSegment(const YDExchange *pExchange, int segmentTime)1

YD Trading System C++ API Programming Guide

101 / 135

af://n5398
af://n5405


Exchange Day trading hours *Night trading hours

CFFEX

09:25:00
09:29:00
09:30:00
11:30:00
13:00:00
14:57:00
15:00:00
15:15:00

 

INE

09:00:00
10:15:00
10:30:00
11:30:00
13:30:00
15:00:00

20:55:00
20:59:00
21:00:00
23:00:00
01:00:00
02:30:00

SHFE

08:55:00
08:59:00
09:00:00
10:15:00
10:30:00
11:30:00
13:30:00
15:00:00

20:55:00
20:59:00
21:00:00
23:00:00
01:00:00
02:30:00

DCE

08:54:50
08:55:00
08:58:50
08:59:00
08:59:50
09:00:00
10:14:50
10:15:00
10:29:50
10:30:00
11:29:50
11:30:00
13:29:50
13:30:00
14:59:50
15:00:00

20:54:50
20:55:00
20:58:50
20:59:00
20:59:50
21:00:00
22:59:50
23:00:00

Field Description

ExchangeRef
Exchange reference No. It is helpful when the detailed trading segment information relating to an exchange
is sent back, otherwise it will be -1.

ProductRef
Product reference No. It is helpful when the detailed trading segment information relating to a product is
sent back, otherwise it will be -1.

InstrumentRef
Instrument reference No. It is helpful when the detailed trading segment information relating to an
instrument is sent back, otherwise it will be -1.

m_pExchange
Exchange pointer. It is helpful when the detailed trading segment information relating to an exchange is
sent back, otherwise it will be NULL.

7.9.2 Detailed trading segment  

The detailed trading segment information can be sent back through the following callback function. The dimensions of the returned 
trading stages may vary among different exchanges, possibly returning the detailed trading segments based on the dimensions of 
exchange, product, or instrument. The detailed trading segments will be notified to investors after the "notifyFinishInit" function, but 
investors should not assume that all statuses of exchanges, products, or instruments can be collected before the "notifyCaughtUp" 
function. Some detailed trading segments may be received after the "notifyCaughtUp" function. Therefore, the strategy program 
should consider the trading segment of an instrument as non-trading until receiving the corresponding notification of the detailed 
trading segments. OMS will ensure that the trading status of all instruments will be correctly sent, regardless of whether the OMS 
has been restarted during market hours. 

The reasons for not being able to receive all the details before notifyCaughtUp can be primarily attributed to two factors. 
Firstly, it could be because the market is currently in a pre-trading phase, and the exchange has not yet pushed any detailed 
transaction segments. Secondly, it is because of the way the OMS sends transactions, if there are updated detailed transaction 
segments during the process of sending transactions, the older versions of those segments will be skipped. If the segment 
number of a new version of a detailed transaction is greater than the maximum order number at the time of API login, then 
the record of that detailed transaction segment will be sent after the function of notifyCaughtUp.

The fields of YDTradingSegmentDetail sent back are described below.

virtual void notifyTradingSegmentDetail(const YDTradingSegmentDetail *pTradingSegmentDetail)1

YD Trading System C++ API Programming Guide

102 / 135

af://n5430


Field Description

m_pProduct
Product pointer. It is helpful when the detailed trading segment information relating to a product is sent
back, otherwise it will be NULL.

m_pInstrument
Instrument pointer. It is helpful when the detailed trading segment information relating to an instrument is
sent back, otherwise it will be NULL.

SegmentTime
The count of seconds from the beginning of a trading day to that time. For its coding method, see the
relevant description for InsertTime in Order Notification.

TradingStatus

Trading segment status:
YD_TS_NoTrading: Non-Trading
YD_TS_Continuous: Continuous trading
YD_TS_Auction: Call auction

Field Description

OrderGroupID

For specifying the logical group to which orders and quotes belong, which can be used to determine
the strategy, connection, and other logical groups to which the orders belong.
Investors can use Order Groups 0-255.
To ensure the compatibility, for Order Group 0, the monotonic increase of OrderRef will not be
checked, while for Order Group 1-255, the OrderRef monotonicity will be checked according to the
settings

GroupOrderRefControl

For specifying the method required by investors for checking the monotonic increase of order
orderRef at the OMSs:
YD_GORF_Increase: Monotonic increase of OrderRef. The gap between two OrderRef numbers must
be higher than or equal to 1
YD_GORF_IncreaseOne: The OrderRef numbers should be strictly monotonically increased, and the
gap between two OrderRef numbers must be 1

7.10 Order group  
In order to better support investors' need for making a distinction between orders and monotonic increase check of order reference 
numbers, YD has added an order group function in Vers. '1.280'. Investors can set OrderGroupID and GroupOrderRefControl in 
YDInputOrder and YDInputQuote to use the order group function.

Important

When version 1.280 introduced the order group function, it supported a maximum of 63 order groups. Version 1.486 increased 
the total number of order groups from 63 to 255. When using the API before version 1.486 to connect to the counter of version 
1.486, you can still only use 63 order groups. To use the maximum of 255 order groups, you must upgrade both the API and the 
counter to version 1.486 or later.

After specifying OrderGroupID and GroupOrderRefControl for an order and a quote, the OMS will check the monotonicity of the 
order group to which the order belongs. If the check fails, an ErrorNo=YD_ERROR_InvalidGroupOrderRef failed order will be sent 
back through notifyOrder, and the current maximum OrderRef of OrderGroupID will be set in the MaxOrderRef notification. 
Whether the order is handled or not, the OrderGroupID and GroupOrderRefControl set for YDInputOrder and YDInputQuote will be 
sent back through YDOrder and YDQuote.

Specifying OrderGroupID and GroupOrderRefControl on each order is a great help for investors' easy operation. For orders with the 
same OrderGroupID, investors can set YD_GORF_Increase for the first one to enable the monotonic increase check function and 
YD_GORF_IncreaseOne for the second one to enable the stringent monotonic increase check function.

After the callback function notifyLogin for successful login for the first time or successful reconnection/login after disconnection, the 
OMS will send back the current maximum OrderRef for each OrderGroupID through the following callback function. Please be sure 
to record the return values in relation to this callback and use OrderRef numbers that meet the increase specification for 
subsequent orders.

For investors using ydExtendedApi, the following method can be used to directly obtain the next OrderRef for orders or quotes:

orderGroupID specifies the order group numbers. If orderGroupID is set to 0, the next OrderRef rules can be set, see Multiple 
Connections; If orderGroupID is set to 1 to 255, the next OrderRef must be the current maximum OrderRef plus 1.

The "update" indicates whether the maximum order reference number of the order group needs to be updated after obtaining the 
next OrderRef. Assuming that the next OrderRef sent back after calling getNextOrderRef is n, if the "update" for this call is "True", 
the next OrderRef sent back after calling getNextOrderRef next time will be n+1; If the "update" for this call is "False", the next 
OrderRef sent back after calling getNextOrderRef next time will still be n.

7.11 Multiple connections  
By default, YD OMSs support multiple API instance connections to OMSs at the same time under the same fund account in addition 
to unlimited connections. A broker can control the maximum login connections for each investor at the OMS end. Investors can 
query whether the broker has set up an upper limit of connections through MaxLoginCount of YDAccount. If no any limit is made, 
the MaxLoginCount will be -1. At the same time, the LoginCount of YDAccount records the current total connections to the fund 

virtual void notifyGroupMaxOrderRef(const int groupMaxOrderRef[])1

virtual int getNextOrderRef(unsigned orderGroupID,bool update=true);1

YD Trading System C++ API Programming Guide

103 / 135

af://n5464
af://n5488


account. For different connections under the same fund account, MaxLoginCount and LoginCount are always the same.

If investors need to make a distinction among different connection orders, the Order Group function should be preferred. It is not 
recommended to use the native SessionID mechanism mentioned in the following text.

In version 1.386, YD provides a native SessionID mechanism, which is designed to meet the regulatory requirements of the 
Shanghai and Shenzhen Stock Exchanges. However, this mechanism was not designed with consideration for investors' 
trading needs.
Therefore, it is not recommended for investors to use this SessionID mechanism in the trading process. However, it can be 
logged for troubleshooting purposes in the future. This mechanism is enabled by default in the spot trading OMS but disabled 
by default in the futures trading OMS. If you need to use it in the futures trading OMS, please contact your broker to enable 
this feature on the OMS side.

The 'SessionID' is assigned by the OMS, and a new 'SessionID' is allocated when the API establishes an initial connection or 
reconnects after disconnection. The maximum number of connections for all investors is 4096, and SessionID numbers range 
from 0 to 4095. The system randomly assigns SessionIDs and does not allocate them in the order of connection. After a 
disconnection, the corresponding SessionID will be reclaimed for reuse. Therefore, during different times of the same trading 
day, SessionIDs may be duplicated among different investors, and even the same investor may receive the same SessionID 
again. However, within the same time period, the SessionIDs of different connections are always different. Therefore, it is 
strongly recommended that investors always obtain the 'getSessionID' through 'notifyLogin'. The function to obtain the 
'SessionID' is shown below:

The 'SessionID' for orders and quotes can be obtained from 'YDOrder.SessionID' and 'YDQuote.SessionID', respectively. After a 
regular OMS restart or failover switch between primary and standby counterparties, the 'SessionID' in the order feedback 
returned by the OMS will be set to -1.

For previous API versions, YD provided investors using ydExtendedApi with a low-order coding SessionID mechanism with 
OrderRef. However, considering many restrictions, YD no longer suggests its preference. In order to maintain the 
compatibility, this mechanism is still reserved for the order group numbered 0 in the current version. If investors use non-zero 
order groups, the following is invalid.

Please note that once decided, this mechanism should be configured for all connections, otherwise it may lead to potential 
OrderRef coding conflicts. For multi-connection investors who have used Local Risk Control Order, the SessionID mechanism 
must be used, otherwise all OrderRef numbers issued through the connections will conflict.

This connection number mechanism involves the following functions:

Please set the thread number and global thread number rules through setSessionOrderRefRule before submitting any order 
and quote. The parameters of setSessionOrderRefRule are described as follows:

An end digit reserved for SessionID is set in sessionBitCount when OrderRef is used, which can be used for determining 
the maximum counts of connections and orders. The reserved digit can have at most 16 bits and must be the same for all 
connections

The sessionID marks the connection number of this connection. Please number each API instance connection from 0 and 
make sure that the total connections be kept within the range specified by sessionBitCount
For example, assuming that the set sessionBitCount of a connection is 8 and SessionID is 3, then 8 bits in the OrderRef 
are used for expressing the connection number, and the remaining 24 bits (32-8=24 bits), expressing the actual order 
number. Therefore, under this setting mode, there can be 256 (2\^8) connection numbers, and each connection can have 
16,777,216 (2^24) orders, and the connection number for this API instance is 3. The first OrderRef for this connection is 
259 (0b100000000+0b11=0b100000011=259).
After setting, the getSessionOrderRefRule can be used to obtain the set connection number coding rules, and the 
getNextOrderRef, to obtain the next order reference number.

7.12 Raw protocol  
If a '1.280' or higher version API is used, the raw protocol below should be followed strictly for submitting orders and receiving 
notifications, otherwise they will be considered as failed orders. If a '1.188' or lower version API is used, please refer to the 
corresponding raw protocol versions.

7.12.1 Up-bound message  

Starting from Version '1.52', YD has opened the order submission and cancellation message services, and added the quote 
submission, cancellation and various notification message services in Version '1.280'. Investors can send self-compiled UDP 
messages to YD OMSs for trading. Since the raw protocol order submission means that users can combine and send their own data 
packets, its performance directly depends on users' implementation and has nothing to do with the YD API. Whether submitting 
orders under a raw protocol or the UDP mode of YD API, there is no difference in look-through performance at the OMS ends. 
Therefore, comparing with API, the performance only differs at client sending ends.

After a long period of time of iteration, the performance of YD API tested in a YD's laboratory (through X10/25 and X2522 network 
cards) has reached the conditions for common FPGAs. If a customer wants to submit orders based on a raw protocol, the quicker 
method for production order submission should  be selected after completing the implementation and comparing it with the order 
performance of YD API.

virtual int getSessionID(void)1

virtual bool setSessionOrderRefRule(unsigned sessionBitCount,unsigned sessionID);

virtual void getSessionOrderRefRule(unsigned *pSessionBitCount,unsigned *pSessionID);

1

2

YD Trading System C++ API Programming Guide

104 / 135

af://n5507
af://n5509


Version InsertOrder CancelOrder InsertQuote CancelQuote

1 1.188 1.188 1.280 1.280

2 1.280 1.280 1.280 1.280

3 1.280 1.280 1.486 1.486

0 1.280 1.280 1.486 1.486

API provides the timestamp function getYDNanoTimestamp, which, relying on its high accuracy and quick speed, can be used for 
testing the API's order submission speed. The specific method is calling getYDNanoTimestamp before and after insertOrder and 
subtracting the results. The final result is the time difference between the sending time and the first byte appearing on the optical 
fiber.

The order submission & cancellation under a raw protocol can be conducted through UDP or XTCP. The UDP or XTCP port number 
can be found in SystemParam. Refer to System Parameters for details. Since being excluded in YD's check, any source port number 
can be used. When using the XTCP raw protocol for order placement, please send a heartbeat message to the OMS every 2 seconds 
to maintain the connection.

7.12.1.1 Preparation before operation  

Investors can use the raw protocol after the approval of the broker. Just contact the broker to enable the protocol before using. 
Investors can check YD_ AF_ BareProtocol for being set for YDAccount.AccountFlag to confirm whether the raw protocol has been 
enabled or not.

UDP message headers should be obtained by calling getClientPacketHeader. A message header contains information such as 
account and key, so no part of the message header can be modified. The message header can only be obtained during 
notifyFinishInit operation and its subsequent steps. Once a message header is successfully obtained, it will not change during the 
OMS operation. It should be obtained again once the OMS is restarted. Investors using raw protocol orders on the spot trading 
OMS, please take note. Due to the requirement of enabling the Native SessionID Mechanism on the spot trading OMS, if a 
disconnection and reconnection occur during trading hours, the raw protocol message header before the disconnection will become 
invalid. It is essential to retrieve the message header again in the 'notifyLogin' after a successful login.

The YDPacketType can be YD_CLIENT_PACKET_INSERT_ORDER, YD_CLIENT_PACKET_CANCEL_ORDER, 
YD_CLIENT_PACKET_INSERT_QUOTE and YD_CLIENT_PACKET_CANCEL_QUOTE, which are used for obtaining message headers in 
relation to order submission/cancellation and quote submission/cancellation. Starting from version 1.280, YD has added four special 
types of order cancellation: YD_CLIENT_PACKET_INSERT_NORMAL_ORDER, YD_CLIENT_PACKET_CANCEL_NORMAL_ORDER, 
YD_CLIENT_PACKET_INSERT_SPECIAL_ORDER, and YD_CLIENT_PACKET_CANCEL_SPECIAL_ORDER. The first two can only be used for 
regular order cancellation, and if used for other business types, an error will occur. The last two can only be used for submitting and 
withdrawing non-trading operations such as exercise, abandonment of exercise, and covered positions. If used for regular order 
cancellation, an error will occur.

The "header" and "len" refer to the header pointer and length of the memory area created in advance by a user. The header is used 
for containing the header data generated by api. The len should be longer than the length of the corresponding type of header. At 
present, the header length of each operation is 16. 

The 'protocolVersion' can be specified to indicate the version of the protocol message. The default version is the latest protocol 
message version. After selecting the specified protocol version, you need to refer to the protocol message description in the API 
document of the corresponding version.The following table shows the actual api versions of corresponding protocol message used 
by the protocol version. Inverstors using protocol version 0 should pay attention to whether the implementation is compatible with 
the protocol message in the latest version.

As functions are added, the message length of the new version will increase. Investors need to choose message versions carefully 
for the following reasons:

*The OMS will check the consistency of the packet length in the packet header with the actual length of the packet. If a mismatched 
packet header and packet body are used, the OMS will discard it as an error message. For example, after upgrading to API version 
1.486, the default quotation header length of this version is 88. If the program still sends a quotation with a length of 64 which used 
in the 1.280 version document, the quotation will be discarded by the OMS. Therefore, it is recommended that investors clearly 
specify the protocol message version to avoid compatibility issues after upgrading.

*The messages used by the old version are usually shorter; in that, the client might have a slight latency advantage at packaging, 
sending and receiving messages from the OMS. If you do not use any of the features from the new version, latency-sensitive 
investors can choose to continue using the old version. YD promises that the new version of the OMS is compatiable with the old 
version of the message protocol.

The return value refers to the actual length of a returned message header. If the return value is 0, it means that message header 
obtaining fails, since, usually, the length of the pre-created memory area is insufficient, and the calling time is earlier than that for 
notifyFinishInit, or no raw protocol-based order submission function YD_AF_BareProtocol is enabled. 

/// definition of protocolVersion

///     0: newest protocol version

///     1: protocol for api version up to 1.188

///     2: protocol for api version up to 1.386

///     3: protocol for api version from 1.486, current newest version

virtual int getClientPacketHeader(YDPacketType type,unsigned char *pHeader,int len,int protocolVersion=0);

1

2

3

4

5

6

YD Trading System C++ API Programming Guide

105 / 135

af://n5514


Address
offset

Length
(bytes)

Field type Description

0 16 Integer Message header.

16 4 Integer (little-endian)
Instrument reference No. It can be obtained through the
InstrumentRef of YDInstrument.

20 1 Integer Trading direction (0: buy, 1: sell)

21 1 Integer
Position opening and closing flags (0: Position opening, 1:
Position closing, 3: Today's position closing, 4: Pre position
closing)

22 1 Integer Hedge flags (1: Speculation, 2: Arbitrage, 3: Hedge)

23 1 Integer
Connection selection method (0: YD_CS_Any, 1: YD_CS_Fixed, 2:
YD_CS_Prefered)

24 8
IEEE 754 Double-accuracy
float type (little endian)

Price

32 4 Integer (little-endian) Order volume

36 4 Integer (little-endian) Order reference

40 1 Integer
Order Type (0: Price-limited order, 1: FAK, 2: Market order, 3:
FOK)

41 1 Integer 0

42 1 Integer Connection number

43 5 Integer 0

48 1 Unsigned integer Order group ID

49 1 Integer

OrderRef control mode of order groups, refer to Order Group
0: Monotonic increase OrderRef numbers. The gap between two
OrderRef numbers must be higher than or equal to 1
1: The OrderRef numbers should be strictly monotonically
increased, and the gap between two OrderRef numbers must be
1

50 1 Integer

Triggered order Type
0: No trigger
1: Profit taking trigger
2: Loss stopping trigger

51 1 Integer
The order attributes of the exchange, which shall be interpreted
by the exchange to which the order belongs
YD_EOA_DCE_GIS=1：DCE GIS(Good in Session)

52 4 Integer Please refer to Remote User-defined field

56 8 Integer 0

64 8
IEEE 754 Double-accuracy
float type (little endian)

Trigger price of triggered Order

Address
offset

Length
(bytes)

Field type Description

0 16 Integer Message header.

16 4
Integer (little-
endian)

Exchange order number or OrderRef for orders to be cancelled.

20 1 Integer Exchange SN. Obtained from ExchangeRef of YDExchange.

21 1 Integer
Connection selection method (0: YD_CS_Any, 1: YD_CS_Fixed, 2:
YD_CS_Prefered)

22 1 Integer Connection number

23 1 Integer 0

7.12.1.2 Order submission message  

The following shows the message structure when submitting an order, which is equivalent to calling insertOrder.

7.12.1.3 Order cancellation message  

The following shows the message structure for order cancellation, which is equivalent to calling cancelOrder. At present, three order 
cancellation modes i.e. full-accuracy exchange order reference No., exchange order reference No. and commissioned number 
OrderRef are supported. Refer to Normal Order Cancellation for details.

YD Trading System C++ API Programming Guide

106 / 135

af://n5556
af://n5664


Address
offset

Length
(bytes)

Field type Description

24 1 Unsigned integer Order group ID

25 7 Integer 0

32 8
Integer (little-
endian)

Full-accuracy exchange order ID No.

Address
offset

Length
(bytes)

Field type Description

0 16 Integer Message header.

16 4 Integer
Instrument reference No. It can be obtained through the InstrumentRef of
YDInstrument.

20 1
Integer (little-
endian)

Bid offset flag

21 1 Integer Bid hedge flag

22 1 Integer Ask offset flag

23 1 Integer Ask hedge flag

24 8
IEEE 754 Double-
accuracy float type
(little endian)

Bid price

32 8
IEEE 754 Double-
accuracy float type
(little endian)

Ask price

40 4
Integer (little-
endian)

Bid volume

44 4
Integer (little-
endian)

Ask volume

48 4
Integer（little-
endian）

Order reference, namely OrderRef

52 1 Integer
Connection selection method (0: YD_CS_Any, 1: YD_CS_Fixed, 2:
YD_CS_Prefered)

53 1 Integer Connection number

54 1 Integer 0

55 1 Integer

Quote flag
YD_YQF_ResponseOfRFQ: For automatically filling in the RFQ number to
indicate the response price. It is supported by SHFE, INE, DCE, GFEX and
CZCE. Other exchanges do not provide RFQ numbers.
YD_YQF_ReplaceLastQuote：Whether to replace the last quote, only for
CFFEX. YD_YQF_ReplceSpecifiedQuote: Whether to replace the specified
quote, only for CFFEX.

56 1 Unsigned integer Order group ID

57 1 Integer

OrderRef control mode of order groups, see Order Group
0: Monotonic increase OrderRef numbers. The gap between two OrderRef
numbers must be higher than or equal to 1
1: The OrderRef numbers should be strictly monotonically increased, and
the gap between two OrderRef numbers must be 1

58 1 Integer
The order attributes of the exchange, which shall be interpreted by the
exchange to which the order belongs
YD_EOA_DCE_GIS=1：DCE GIS(Good in Session)

59 5 Integer 0

64 4
Integer (little-
endian)

Please refer to Remote User-defined field

68 12 Integer 0

80 8
Integer (little-
endian)

QuoteSysID used by CFFEX quote modification.

7.12.1.4 Quote submission message  

The following shows the message structure when submitting a quote which is equivalent to calling insertQuote.

YD Trading System C++ API Programming Guide

107 / 135

af://n5717


Address
offset

Length
(bytes)

Field type Description

0 16 Integer Message header.

16 4
Integer (little-
endian)

Exchange quote number or OrderRef for quotes to be cancelled.

20 1 Integer Exchange SN. Obtained from ExchangeRef of YDExchange.

21 1 Integer
Connection selection method (0: YD_CS_Any, 1: YD_CS_Fixed, 2:
YD_CS_Prefered)

22 1 Integer Connection number

23 1
Unsigned
integer

Order group ID

24 8
Integer (little-
endian)

Full-accuracy exchange quote number

32 1 Integer

The method of cancelling quote. (Only for SSE, SZSE can only cancel
quotes by both sides simultaneously)
YD_CQIT_Buy=1：cancel buy side
YD_CQIT_Sell=2: cancel sell side
YD_CQIT_Both=3：cancel both sides

33 7 Integer 0

Address offset Length (bytes) Field type Description

0 2 Integer (little-endian) Message length (including the header of this message)

2 2   Non-public field

4 4 Integer (little-endian) Message type

8 4   Non-public field

12 4 Integer (little-endian) Investor account SN

Message type Description

34 Order notification

35 Trade notification

37 RFQ

40 Quote notification

43 Notification for order or quote cancellation failure

Address
offset

Length
(bytes)

Field type Description

0 16   Message header

7.12.1.5 Quote cancellation message  

The following shows the message structure for quote cancellation, which is equivalent to calling cancelQuote. At present, three 
quote cancellation modes i.e. full-accuracy exchange order reference No., exchange order reference No. and commissioned number 
OrderRef are supported. Refer to Normal Quote Cancellation for details.

7.12.2 Down-bound message  

The down-bound messages of YD are sent through TCP. YD will not consider adding UDP down-bound messages until it can 
effectively solve the problem on reliable UDP delivery. Investors who need to parse down-bound messages should bypass and 
monitor TCP message segments, and properly handle possible troubles such as retransmission and adhesion.

7.12.2.1 Message header  

YD's down-bound messages have the same header structure. After receiving a down-bound message, the message type of the 
header should be parsed first to determine the message structure for parsing subsequent data. The message header structure is 
shown below:

The possible message types for the above message headers are shown below:

7.12.2.2 Order notification message  

Due to a large number of operations reusing order notification messages, please only focus on the order notification when the 
order flag is 0, and those non-zero order notifications should be ignored.

YD Trading System C++ API Programming Guide

108 / 135

af://n5835
af://n5888
af://n5890
af://n5943


Address
offset

Length
(bytes)

Field type Description

16 4 Integer (little-endian)
Instrument SN. Corresponding to InstrumentRef of
YDInstrument.

20 1 Integer Trading direction (0: buy, 1: sell)

21 1 Integer
Position opening and closing flags (0: Position opening, 1:
Position closing, 3: Today's position closing, 4: Pre position
closing)

22 1 Integer Hedge flags (1: Speculation, 2: Arbitrage, 3: Hedge)

23 1 Integer
Connection selection method (0: YD_CS_Any, 1: YD_CS_Fixed, 2:
YD_CS_Prefered)

24 8
IEEE 754 Double-accuracy
float type (little endian)

Order price

32 4 Integer (little-endian) Order volume

36 4 Integer (little-endian) Investor's order reference No.

40 1 Integer Order type (0: Price limited order, 1: FAK, 2: Market order, 3: FOK)

41 1 Integer Order flag

42 1 Integer Specified connection number

43 1 Integer Actually used connection number

44 4 Integer (little-endian) Error No.

48 4 Integer (little-endian) Exchange reference No.

52 4 Integer (little-endian) Exchange order ID No.

56 4 Integer (little-endian) Order status

60 4 Integer (little-endian) Trade volume

64 4 Integer (little-endian) Exchange order submission time

68 4 Integer (little-endian) Local order reference No. of the OMS

72 1 Unsigned integer Order group ID

73 1 Integer

OrderRef control mode of order groups, refer to Order Group
0: Monotonic increase OrderRef numbers. The gap between two
OrderRef numbers must be higher than or equal to 1
1: The OrderRef numbers should be strictly monotonically
increased, and the gap between two OrderRef numbers must be
1

74 1 Integer

Trigger order Type
0: No trigger
1: Profit taking trigger
2: Loss stopping trigger

75 1 Integer
The order attributes of the exchange, which shall be interpreted
by the exchange to which the order belongs
YD_EOA_DCE_GIS=1：DCE GIS(Good in Session)

76 4 Integer (little-endian) Please refer to Remote User-defined field

80 8   Non-public field

88 8
IEEE 754 Double-accuracy
float type (little endian)

Trigger price of triggered Order

96 4 Integer (little-endian)
Order trigger status
0: Not Triggered
1: Triggered

100 4 Integer (little-endian)

Millisecond counts from the beginning (17:00) to the order-insert
time of a trading day. For example:
500 ms past 21:00 in night trading hours: 3600*(21-17)*1000+500
= 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-17)*1000+500
= 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-
17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference
time, see string2TimeStamp and timeStamp2String of ydUtil.h

YD Trading System C++ API Programming Guide

109 / 135



Address
offset

Length
(bytes)

Field type Description

104 8 Integer (little-endian) Full-accuracy exchange order ID No.

112 4 Integer (little-endian)

Millisecond counts from the beginning (17:00) to the order-cancel
time of a trading day. For example:
500 ms past 21:00 in night trading hours: 3600*(21-17)*1000+500
= 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-17)*1000+500
= 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-
17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference
time, see string2TimeStamp and timeStamp2String of ydUtil.h

116 4 Integer (little-endian) Connection number

120 4   Non-public field

124 4 Integer (little-endian) sno used by GTJA Cash

Address
offset

Length
(bytes)

Field type Description

0 16   Message header

16 4 Integer (little-endian)
Instrument SN. Corresponding to InstrumentRef of
YDInstrument.

20 1 Integer Trading direction (0: buy, 1: sell)

21 1 Integer
Position opening and closing flags (0: Position opening, 1:
Position closing, 3: Today's position closing, 4: Pre position
closing)

22 1 Integer Hedge flags (1: Speculation, 2: Arbitrage, 3: Hedge)

23 1   Non-public field

24 4 Integer (little-endian) Exchange trade ID No.

28 4 Integer (little-endian) Exchange order ID No.

32 8
IEEE 754 Double-accuracy
float type (little endian)

Trade price

40 4 Integer (little-endian) Trade volume

44 4 Integer (little-endian) Exchange trade time

48 8
IEEE 754 Double-accuracy
float type (little endian)

Trade commission

56 4 Integer (little-endian) Local order reference No. of OMS

60 4 Integer (little-endian) Investor's order reference No.

64 1 Unsigned integer Order group ID

65 1 Integer Actually used connection number

66 2   Non-public field

68 4 Integer (little-endian)

Millisecond counts from the beginning (17:00) to the trade time
of a trading day. For example:
500 ms past 21:00 in night trading hours: 3600*(21-
17)*1000+500 = 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-
17)*1000+500 = 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-
17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference
time, see string2TimeStamp and timeStamp2String of ydUtil.h

72 8 Integer (little-endian) Full-accuracy exchange order ID No.

80 8 Integer (little-endian) Full-accuracy exchange trade ID No.

88 4 Integer (little-endian) Please refer to Remote User-defined field

92 4   Non-public field

7.12.2.3 Trade notification message  

YD Trading System C++ API Programming Guide

110 / 135

af://n6121


Address
offset

Length
(bytes)

Field type Description

0 16   Message header

16 4
Integer (little-
endian)

Instrument SN. Corresponding to InstrumentRef of YDInstrument.

20 4
Integer (little-
endian)

Second counts from the beginning (17:00) to the RFQ time of a trading
day. For example:
At 21:00 in night trading hours: 3600*(21-17) = 14400
At 9:00 in day trading hours: 3600*(24+9-17) = 57600
At 9:00 in Monday's trading hours: 3600*(24+9-17) = 5760
For the conversion between the integral time and reference time, see
string2TimeID and timeID2String of ydUtil.h

24 4
Integer (little-
endian)

RFQ ID No.

28 4   Non-public field

32 8
Integer (little-
endian)

Full-accuracy RFQ ID No.

Address
offset

Length
(bytes)

Field type Description

0 16   Message header

20 4
Integer (little-
endian)

Instrument SN. Corresponding to InstrumentRef of YDInstrument.

24 1 Integer Bid offset flag

25 1 Integer Bid hedge flag

26 1 Integer Ask offset flag

27 1 Integer Ask hedge flag

28 8

IEEE 754 Double-
accuracy float
type (little
endian)

Bid price

36 8

IEEE 754 Double-
accuracy float
type (little
endian)

Ask price

44 4
Integer (little-
endian)

Bid volume

48 4
Integer (little-
endian)

Ask volume

52 4
Integer (little-
endian)

Customer's order reference No. i.e.

56 1 Integer
Connection selection method (0: YD_CS_Any, 1: YD_CS_Fixed, 2:
YD_CS_Prefered)

57 1 Integer Specified connection number

58 1 Integer Actually used connection number

59 1 Integer

Quote flag
YD_YQF_ResponseOfRFQ: For automatically filling in the RFQ number to
indicate the response price. It is supported by SHFE, INE, DCE, GFEX and
CZCE. Other exchanges do not provide RFQ numbers.

60 1 Unsigned integer Order group ID

61 1 Integer

OrderRef control mode of order groups, refer to Order Group
0: Monotonic increase OrderRef numbers. The gap between two OrderRef
numbers must be higher than or equal to 1
1: The OrderRef numbers should be strictly monotonically increased, and the
gap between two OrderRef numbers must be 1

7.12.2.4 RFQ notification message  

7.12.2.5 Quote notification message  

YD Trading System C++ API Programming Guide

111 / 135

af://n6238
af://n6275


Address
offset

Length
(bytes)

Field type Description

62 1 Integer
The quote attributes of the exchange, which shall be interpreted by the
exchange to which the order belongs
YD_EOA_DCE_GIS=1：DCE GIS(Good in Session)

63 1   Non-public field

64 4
Integer (little-
endian)

Error No.

68 4
Integer (little-
endian)

Exchange SN. Corresponding to ExchangeRef of YDExchange.

72 4
Integer (little-
endian)

If ErrorNo is YD_ERROR_InvalidGroupOrderRef, it means that the maximum
OrderRef has been received by current OMS; Otherwise, it means a quote
number for quote cancellation. If the return value of the exchange is too long,
it will be truncated.

76 4
Integer (little-
endian)

The OrderSysID of the bid quote, which is 0 when selling a one-side quote. If
the return value of the exchange is too long, it will be truncated.

80 4
Integer (little-
endian)

The OrderSysID of the ask quote, which is 0 when buying a one-side quote. If
the return value of the exchange is too long, it will be truncated.

84 4
Integer (little-
endian)

When YDQuoteFlag is YD_YQF_ResponseOfRFQ, the order response RFQ
number will be recorded, otherwise will be 0. If the return value of the
exchange is too long, it will be truncated.

88 4
Integer (little-
endian)

Connection number

92 8
Integer (little-
endian)

Full-accuracy quote number for quote cancellation

100 8
Integer (little-
endian)

The OrderSysID of a full-accuracy bid quote, which will be 0 when selling a
one-side quote

108 8
Integer (little-
endian)

The OrderSysID of a full-accuracy ask quote, which will be 0 when buying a
one-side quote

116 8
Integer (little-
endian)

When YDQuoteFlag is YD_YQF_ResponseOfRFQ, the full-accuracy order
response RFQ number will be recorded, otherwise will be 0

124 4
Integer（little-
endian）

Please refer to Remote User-defined field

128 12   Non-public field

140 8
Integer（little-
endian）

QuoteSysID used by CFFEX quote modification.

Address
offset

Length
(bytes)

Field type Description

0 16   Message header

16 4
Integer (little-
endian)

Exchange order reference No. or quote NO.

20 1
Integer (little-
endian)

Exchange SN. Corresponding to ExchangeRef of YDExchange.

21 1
Unsigned
integer

Order group ID

22 1 Integer

The method of cancelling quote. (Only for SSE, SZSE can only cancel
quotes by both sides simultaneously)
YD_CQIT_Buy=1：cancel buy side
YD_CQIT_Sell=2: cancel sell side
YD_CQIT_Both=3：cancel both sides

23 1 Integer
Order flag YDOrderFlag, invalid in case of a notification message for
quote cancellation failure

24 4
Integer (little-
endian)

Error No.

7.12.2.6 Notification message for order or quote cancellation failure  

Due to a large number of operations reusing order or quote cancellation notification messages, please only focus on the order 
cancellation notification when the order flag is 0, and those non-zero order cancellation notifications should be ignored. 

YD Trading System C++ API Programming Guide

112 / 135

af://n6447


Address
offset

Length
(bytes)

Field type Description

28 4
Integer (little-
endian)

Quote flag IsQuote.
1: This message relates to a notification for a quote cancellation failure
0: This message relates to a notification for an order cancellation failure

32 4
Integer (little-
endian)

Investor's order reference No. OrderRef

36 4   Non-public field

40 8
Integer (little-
endian)

Full-accuracy exchange order reference No. or quote No.

Address offset Length(bytes) Field type Description

0 2 Integer (little-endian) Fixed as 8

2 2   Non-public field

4 4 Integer (little-endian) Fixed as 0

Field Description

ExchangeRef Exchange reference No. It can be obtained from YDExchange.

7.12.2.7 Heartbeat message  

Heartbeat messages are used to maintain the TCP connection between the client and server. Both the client and the server will send 
heartbeat messages.

7.13 Fixed connection  
A front server refers to the server of an exchange trading system that help the OMSs to connect and receive OMS submitted orders 
and returned notifications. Generally, more than one server is used. Considering the difference in number of connections for each 
front server as well as the imbalance in instantaneous operation volume, the performance of different front servers in delivering 
orders to the trading core may also vary. Therefore, during trading, Investors should evaluate the performance of each front and 
exclude the slowest front before placing orders on the remaining seats.

A connection refers to an account configured in the OMSs for connecting to a front server. YD is always trying its best to make each 
connection compliantly connect to different fonrt server for the sake of investors' freest choice. When a broker arranges a YD OMS, 
it usually configure the same number of connections as that of exchange front ervers. Generally, the connections of YD OMSs can 
cover all exchange's front servers, and therefore, selecting a front server is essentially means selecting a connection.

Due to the existence of fixed connection orders, the order volume on different connection of YD OMS is usually unbalanced, 
especially in the case of reporting the results of the connection selection, which can easily trigger connection flow control. It is 
recommended for investors to obtain connection information, understand the mechanism of connection flow control of YD, and 
based on their production needs, place fixed connection orders or fixed connection cancel orders.Investors who have exclusive 
access to the counter can use reporting the results of the connection selection to share results of the connection selection with all 
accounts.

7.13.1 Obtaining connection information  

YD OMSs support connecting to multiple exchanges for simultaneous trading. The connection information for each exchange is 
completely independent, and therefore, the following contents relate to a single exchange.

The total number of seats of an exchange can be found through YDExchange.ConnectionCount. The number of first connection is 0 
and the number of last connection is ConnectionCount minus 1. YD supports a maximum of 64 seats. YD categorizes seats into 
public seats and dedicated seats.:

Public seats: Seats that can be used by all investors. All public seats are listed through YDExchange.IsPublicConnectionID[64]. A 
connection can be checked for being a public one according to the seat number. If IsPublicConnectionID[i] is "True", it means 
the ith connection is a public one, otherwise, a dedicated one.

Dedicated seats: Seats that can only be used by specified investors. Each dedicated seat can be assigned to multiple investors, 
and each investor can also use multiple dedicated seat. The dedicated seat information for each investor is listed through 
YDAccountExchangeInfo.IsDedicatedConnectionID[64]. If IsDedicatedConnectionID[i] is "True", the ith connection will be a 
dedicated one for this investor, otherwise it will not be a dedicated one.

Thus, the available seats of investors are the superposition of public and dedicated seats, while the non-available seats are 
dedicated seats of other investors.

Investors may want to compare the performances of two OMSs under the same front server. In version 1.386, investors can retrieve 
the connection information through 'YDExchange.ConnectionInfos' (accessible directly by array indexing, with the array size being 
'YDExchange.ConnectionCount'). Additionally, YD API also informs about the connection information through 
'notifyExchangeConnectionInfo' after 'notifyFinishedInit'. It provides the initial status of all connections during the first startup. In 
case there are changes in connection information due to disconnection or other reasons during trading hours, such updates will 
also be notified through the aforementioned callback.

The field information of 'YDExchangeConnectionInfo' is as follows:

virtual void notifyExchangeConnectionInfo(const YDExchangeConnectionInfo *pExchangeConnectionInfo)1

YD Trading System C++ API Programming Guide

113 / 135

af://n6510
af://n6533
af://n6537


Field DescriptionConnectionID Connection ID

ConnectionStatus
Connection status
YD_ECS_DISCONNECTED=0：Seat disconnected
YD_ECS_CONNECTED=1：Seat connected

Info
Front IP address information. By default it will not be published, please contact your broker if y you
need this info.

InsertFlowControl

Check the maximum number of orders per interface within the time window during order placement or
quote.The expression format is count/window, In the expression, the numerator 'count' represents the
quantity limit, and the denominator 'window' represents the size of the time window for checking. If the
numerator is less than or equal to 0, it indicates no upper limit. If the denominator is not specified or is
less than or equal to 1, it represents 1000.
For example, 50/1000 means that within a sliding time window of 1000 milliseconds, no more than 50
orders are allowed to be placed.
Generally, the SHFE allows 50 orders within a 1000-millisecond time window, while other exchanges
allow 100 orders within the same time window.

CancelFlowControl

Check the maximum number of order cancellations per interface within the time window during order
cancellation or cancellation of quotes. The expression format is count/window. In the expression, the
numerator 'count' represents the quantity limit, and the denominator 'window' represents the size of
the time window for checking. If the numerator is less than or equal to 0, it indicates no upper limit. If
the denominator is not specified or is less than or equal to 1, it represents 1000. This field can be left
empty, indicating the same as the seat's order rate limit.
For example, 50/1000 means that within a sliding time window of 1000 milliseconds, no more than 50
order cancellations are allowed.
Generally, the SHFE allows 50 order cancellations within a 1000-millisecond time window, while other
exchanges allow 100 order cancellations within the same time window.

Exchange Sliding window flow control threshold The threshold for in-transit order flow control

CFFEX 50  

SHFE, INE, DCE, GFEX, CZCE 100  

SSE, SZSE   velocity control rights

7.13.2 Seat flow control  

At present, the exchanges have two connection flow control modes for restricting the connection order transmission speed. Please 
note that the connection flow control does not make exceptions to investors, and the orders of all investors using the same 
connection are calculated in summary on the OMSs:

Sliding Window Flow Control: For limiting the maximum counts of order submissions and cancellations per second for each 
connection or gateway. If exceeding the limit, the specific behaviors of each exchange APIs differ. Some exchange APIs will 
directly reject orders, and some will cache the orders until the next second for transmission. At present, all exchanges have this 
connection flow control mode and have announced their flow control thresholds. See the following table for the specific 
threshold information;

In-transit Flow Control: For limiting the volume of orders that have been sent to exchanges but have not received the 
notification. If exceeding the limit, The specific behaviors of each exchange's API may vary. Some exchange APIs may directly 
reject orders, while others may queue orders until the in-transit order flow control is below a certain threshold. Currently, only 
a few exchanges have in-flight order flow control, including SSE and SZSE with their velocity control rights. However, other 
futures exchanges have not disclosed specific rules and thresholds for in-flight order flow control.

In order to avoid orders being cached and delayed due to sliding window flow control and in-transit order flow control, and to meet 
the principle of reporting errors as early as possible, YD Counter has implemented sliding window flow control and in-transit order 
flow control (starting from version 1.386.40.24, supporting in-transit order flow control for SHFE and CFFEX, other exchanges are not 
supported. As the current order volume on SSE and SZSE is relatively small, sliding window flow control is temporarily used as a 
substitute. Please contact us if you actually need this function.) Intercepting orders before submission to APIs will result in API flow 
control of order submission and cancellation. For specific error reporting information, refer to Designated Connection for Order 
Submission. The term "flow control" in this context refers to the collective use of sliding window flow control and in-transit order 
flow control.

7.13.3 Designated connection for order submission  

Investors can set the ConnectionSelectionType and ConnectionID under the YDInputOrder and YDInputQuote to select order 
submission connections in different ways. The selection logic for preferred selection methods of various connections is shown 
below. Please note that disconnected, flow-control-limit reached, and non-selectable connections are excluded in connection 
selection.

When ConnectionSelectionType is YD_CS_Any, a global polling will be achieved. The specific rules are:

All connections will be traversed one by one from the one subsequent to that using YD_CS_Any for order submission (the 
traversal will start from the beginning after reaching the last connection until reaching the starting connection of the 
traversal). If a connection is found not involved in the queue, it should be selected directly. Otherwise, check whether the 
order queue length of the connection is shorter than that of each previous connection. If being the shortest, just record it 
until the traversal is completed. Select the connection with the shortest recorded queue length. Finally, insert the order 
into the selected connection queue for submission.

YD Trading System C++ API Programming Guide

114 / 135

af://n6571
af://n6596


The poll does not make exceptions to investors, namely the orders of all investors are uniformly polled. Therefore, an 
investor submitting order under this mode may not be able to obtain consecutive connection numbers from through 
RealConnectionID.

When ConnectionSelectionType is YD_CS_Fixed, a fixed connection order submission will be achieved. The specific rules are:

Directly select a connection using the ConnectionID and insert the order into the queue for submission.

When ConnectionSelectionType is YD_CS_Prefered, a prefered connection is selected for order submission and the other seats 
are used if the preferred connection is busy. The specific rules are:

All connections will be traversed one by one from the one subsequent to that specified by the ConnectionID (the traversal 
will start from the beginning after reaching the last connection until reaching the starting connection of the traversal). If a 
connection is found not in the queue, it should be selected directly. Otherwise, check whether the order queue length of 
the connection is shorter than that of each previous connection. If being the shortest, just record it until the traversal is 
completed. Select the connection with the shortest recorded queue length. Finally, insert the order into the selected 
connection queue for submission.

In some cases, perhaps no any connection will be selected. YD lists various errors that may exist when searching for selected 
connections through different error codes:

As long as one connection reaches the flow control limit, and all other connections are not dedicated, disconnected or have 
reached the upper limit of the connection queue, an error of " YD_ERROR_CanNotSendToExchangeForFlowControl=79 no 
available connection is provided and some connections reach the flow control limit" will be returned.

If all connections are not available (dedicated, disconnected or reached the queue limit), an error of 
"YD_ERROR_CanNotSendToExchange=9 No available connection" will be returned.

When an order that has already been involved in the connection queue moves to the top and is ready for submission to an 
exchange, if exchange APIs such as orders, quotes, combinations and exercises reach the in-transit limits during submission or an 
error is sent back due to a disconnection, a message "YD_ERROR_ExchangeConnectionSendError=80 Exchange API transmission 
error" will be sent back. When the above error is caused and the OMS notification function for YD_AF_NotifyOrderAccept is enabled 
under YDAccountFlag, the notifyOrder notifications received will randomly be one of the following, so investors' strategy program 
should not rely on the notification counts, but focus on the notification status:

A notification for OrderStatus=YD_OS_Rejected and ErrorNo=YD_ERROR_ExchangeConnectionSendError will be received

Two notifications will be received, the first of which is that for OrderStatus=YD_OS_Accepted and ErrorNo=0, and the second, 
that for OrderStatus=Rejected and ErrorNo=YD_ERROR_ExchangeConnectionSendError

The selected seat (the seat actually used for order submission) can be obtained through the RealConnectionID in the notification of 
YDOrder or YDQuote.

7.13.4 Designated connection for order cancellation  

Investors can set the ConnectionSelectionType and ConnectionID under the YDCancelOrder and YDCancelQuote to select order 
cancellation connections in different ways. Unlike order submission, the cancellation is dependent on the type of the OMS 
connections and therefore cannot be completely selected according to investors' settings.

When the OMS connections are subject to full-management, the processing logic is the same as that of designated connections 
for order submission;

When the OMS connections are subject to "first mangement others non-management seat", the original order submission 
connection and first management connection should be checked in order. If a connection is not involved in the queue, select it 
directly, otherwise, select the connection with a shorter queue length. If the queue length is the same, select the original order 
submission connection. Finally, insert the order into the selected connection queue for submission.

When the OMS connections are subject to full-non-management, the order cancellation must be conducted from the original 
order submission connection. At this time, the original order submission connection should be selected through the OMS and 
the order should be inserted into the connection queue for submission

As with the designated connection order submission, the designated connection order cancellation will cause errors for exactly the 
same reasons. Refer to Designated Connection Order Submission.

There is no way for APIs to obtain the selected connection in order cancellation. If this information is needed during 
troubleshooting, just contact the broker and request assistance in querying the inputFlow.txt of the OMSs.

7.13.5 Reporting the results of the seat optimization  

In order to eliminate the slowest one, investors should compare the performance of each front server. The specific evaluation 
method should be implemented by investors based on the strategy. Generally, a single connection can be preferably selected 
through sending YD_CS_Fixed orders to all connections at a minimal gap: The connection with the smallest exchange order 
reference number OrderSysID in notifications for all connections is the best one in the test round. Through repeating the above 
steps and making a statistical analysis, the best connection recognized by investors can be selected, then this connection can be 
designated for order submission through YD_CS_Fixed and YD_CS_Prefered. Please note that the evaluation should not be too 
frequent, otherwise it may lead to order blocking on an OMS, disrupting the normal trading of other investors using the OMS, and 
even being considered as abnormal trading by exchanges.

If a broker has the ability to perform a connection selection and hopes its customers use its results, or perform a preferred selection 
at its exclusive OMS through one of the accounts and hopes that other accounts can also be available for submitting orders 
according to the preferred results, it can regularly transmit the preferably selected connection results for other accounts using the 
same OMS through the preferred connection reporting interface selectConnections. Only when the YD_AF_SelectConnection flag is 
set for YDAccount.AccountFlag can investors and administrators be allowed to use this interface.

virtual bool selectConnections(const YDExchange *pExchange,unsigned long long connectionList);1

YD Trading System C++ API Programming Guide

115 / 135

af://n6629
af://n6640


The connectionList can be considered as a sequence of elements with a length of 4 bits, with each 4-bit representing one connection 
number, and the lowest bit representing the quickest connection. All exchanged connection numbers must be specified. For 
example, if you want to set the connection sequence (front server) from quick to slow to 2-3-1-4, the binary representation of the 
connectionList will be: 0100 0001 0000 0011 0010.

The validity period of the preferred seat result is MaxSelectConnectionGap (default value is 5 minutes), otherwise the submitted 
results will be invalid; If the result is expired after a timeout, it is recommended to submit a new report within the 
MaxSelectConnectionGap time limit to prevent the expiration and invalidation of the seat selection mechanism. At the same time, 
the reporting interval for seat selection results should not be too frequent, and the minimum gap shall not be shorter than 
MinSelectConnectionGap (60s by default). For the obtaining method of MaxSelectConnectionGap and MinSelectConnectionGap, 
refer to System Parameters.

When the results of the seat optimization on the counter takes effect, all orders and cancellations using the YD_CS_Any method on 
that counter will be placed in seats according to the results of the seat optimization. Seat selection rule: according to the results of 
the seat optimization, iterate through all seats in order and prioritize seats with no queue. If all seats have a queue, then select the 
seat with the shortest queue length. During the selection process, unavailable seats will be skipped, such as seats under flow 
control, dedicated seats, disconnected seats, or seats that have reached the maximum queue limit. 

At the counter where the results of the seat optimization takes effect, because orders tend to choose faster seats in priority order, it 
may lead to faster seats being more prone to flow control. When the counter is configured with all non-management seats, it can 
result in orders on seats under flow control being unable to be canceled. At the same time, in order to avoid the same front 
suppression effect, starting from version 1.280, YD OMS supports setting the number of rotations for preferred seats. This feature 
only takes effect when the preferred seat selection result at the counter takes effect.

The same front suppression effect refers to the situation in production where two sets of the same brand and configuration of 
counters send orders to the same front successively, and the counter that sends the order first always stays ahead of the 
counter that sends the order later. The reason for this kind of problem is that there is a logical relationship between the 
orders submitted to the same front by two sets of YD OMS, even if there is only an extremely small time difference(for 
example, 100ns), there will still be an absolute order relationship, which leads to the exchange's preference for processing the 
order that arrives first. However, in fact, there is no essential difference in performance between these two sets of YD OMS, 
and such a disparate result should not occur. At this point, if using the second or third ranked seat for order placement, it may 
increase the likelihood of taking the lead, as fundamentally seat prioritization only excludes the poorer seats, and the 
performance of the seats at the forefront may be essentially close. Therefore, avoiding using the same front for order 
placement may alleviate the issue of front suppression.

After setting the number of seat rotation to n, the first n preferred seats will be used in a loop for order placement each time. 
Assuming the preferred results are still 2-3-0-1-4-5, and the seat rotation number is set to 4, it means rotating the first 4 seats, which 
are 2, 3, 0, and 1. The seat selection rules are basically the same as when the seat rotation number is not set, the only difference is 
that after setting the seat rotation number, the "effective" seat selection results for each order placement will change according to 
the seat rotation:

The seat preference order for the first order placement is 2-3-0-1-4-5.

The seat preference order for the second order placement is 3-0-1-2-4-5.

The seat preference order for the third order placement is 0-1-2-3-4-5.

The seat preference order for the fourth order placement is 1-2-3-0-4-5.

The seat preference order for the fifth order placement is 2-3-0-1-4-5.

And so on.

7.14 Unknown timeout order processing  
An unknown overtime order refers to that that without received notification from an exchange after being submitted by an OMS for 
a certain period of time. Since no any notification from the exchange is received, the status of the order will not change. Because the 
margin or position is frozen continuously, this order will remain in the OMS and cannot be released. Unknown timeout orders are 
usually caused by submissions performed when exchanges are disconnected or when the states of exchanges are switched, 
however, the probability is extremely low. YD provides a function for processing unknown overtime orders, however, when using it, 
the following instructions should be followed strictly. The orders can be processed only when confirmed as unknown ones for fear 
of losses.

YD OMSs can be used to continuously monitor YD_OS_Accepted orders (except those RFQ orders and instructions of DCE and GFEX 
with the YDOrderFlag set to YD_YOF_Mark). If no any notification regarding an order is received from the OMS within the 
MissingOrderGap (60s by default, which can be modified by brokers. For details, refer to System Parameters), the investor will be 
notified of an unknown timeout order via notifyMissingOrder:

The structure YDMissingOrder of unknown timeout orders is the same as YDOrder, however, when sending back a notification, 
YDMissingOrder.InsertTime is filled out with the time of receipt at the OMS, which is different from the exchange time 
YDOrder.InsertTime and should be noted.

After receiving a notification, investors should first confirm the order status at the primary OMS:

If the primary OMS has the information about this order, it is obvious that this order has been received by the exchange and 
the notification sent by the exchange has been lost;

If the primary OMS has no any information about this order, it means that the notification has not been sent to the exchange, 
or the exchange has not yet sent the notification. Considering that there have been notifications from exchanges with a 
timeout for more than one minute during production, waiting for a further period of time is suggested.

virtual void notifyMissingOrder(const YDMissingOrder *pMissingOrder)1

YD Trading System C++ API Programming Guide

116 / 135

af://n6664


If it has been confirmed that the order is an unknown timeout one, just ask the broker for help. The broker's operators should also 
abide by the above rules and help the investor to cancel the unknown timeout order after a prudent judgment. The unknown 
timeout order can only be cancelled through the broker's administrator account rather than the investor himself/herself. After the 
broker cancels the unknown timeout order, the cancellation notification for the unknown timeout order will be sent back through 
notifyOrder. The returned YDOrder.ErrorNo will be YD_ERROR_InternalRejected, and YDOrder.OrderStatus will be YD_OS_Rejected.

If a notification from the exchange is received after cancelling the "unknown timeout order", YD OMS will handle it as an external 
order. Both the OrderRef and OrderLocalID of an external order are -1, thus losing the association with the original order. Of course, 
at this time, the investor can cancel the order. If then a trade notification is received, YD will update the positions and send the trade 
notification to the investor, so it is unnecessary to worry about the correctness of the positions and funds.

7.15 Performance tuning  
The performance tuning aims to reduce overall look-through delay, namely from receiving the market data to sending an order 
request from the OMS to the exchange, steps such as market data receiving, strategy calculation, client order submission, switch 
forwarding, OMS risk control and submission to exchange are included. Each of the above steps is set on the critical path for 
trading. The low performance of one step can offset the high performance of other steps. The market leadership can only be 
ensured when the highest look-through performance of each step is kept. 

Among them, client order submission and OMS risk control and submission to exchange are key steps in the trading services 
provided by YD. The look-through time points of these two steps are called API look-through performance and the OMS look-
through performance, respectively.

7.15.1 API look-through performance  

The API look-through performance refers to the time difference between starting to call insertOrder (or other order submission 
methods) and appearing the first byte for order submission on the optical fiber.

Since most OMSs' APIs will send back information immediately after being called, the only way to test the API look-through 
performance is to divide the "TX" ports of the up-bound OMSs of the investor strategy host and loopback to the sniff network card 
on the strategy host, and keep the clock on the sniff network card synchronized with the system clock. Record the timestamp of the 
system clock before submitting the order as the start timestamp. Use tcpdump or similar tools to timestamp the order packets 
received by the sniff network interface as the end timestamp. The difference between the two timestamps is the API's latency. The 
sniff network interface needs to support nanosecond-precision hardware timestamps and should be synchronized with the system 
time using the corresponding tools. If using the tcpdump tool, you can refer to the following command:

The return of the insert order function in the YD API indicates that the data packet has been sent over the optical fiber. Therefore, a 
simple method to obtain latency is to directly record system timestamps before and after the order submission and calculate the 
difference. It is recommended that investors measure the latency performance of the YD API using the aforementioned standard 
testing method for latency and compare it with the simple method. If the final conclusion shows that the results of the standard 
testing method and the simple testing method are essentially consistent, then the simple method can be used for measuring the 
latency performance of the YD API in subsequent evaluations. Please note that before using the simple method to measure the 
latency performance of other APIs or raw protocol, it is essential to calibrate the feasibility of the simple method using the standard 
testing method.

YD provides a quick and high-accuracy timestamp function with a low performance overhead and no excessive impact on the critical 
path for order submission can be caused. When testing the API look-through performance, timestamps can be obtained by using 
this function before and after using the order submission function, and the nanosecond count for API look-through delay can be 
obtained by calculating the difference value between the timestamps.

After a long period of iterative optimization of APIs, YD can realize its API look-through performance of less than 250ns when using 
Solarflare X2522 or Exanic X10/X25 network cards and its acceleration software. If the actual look-through performance tested by 
investors does not reach this indicator, the network card and startup method should be checked first for meeting YD's requirements 
and, if possible, reaching the official performance standard. If not, contact YD through a broker.

Investors who have used raw protocols on other systems tend to use raw protocols. Considering investors' trading habits, YD also 
provides a method of Raw Protocol for order submission and cancellation. However, the look-through performance of YD APIs has 
reached the level of ordinary FPGAs. Therefore, if investors try to implement their own raw protocol-based order submission, they 
can compare its look-through performance with that of YD APIs after implementing the raw protocol-based order submission, and 
the quicker method can be selected for production of orders.

7.15.2 OMS look-through performance  

The OMS look-through performance refers to the time difference when the first byte for order submission enters and leaves an 
OMS. This indicator can be used for objectively and impartially demonstrate the OMS performance and is the most commonly used 
one to judge the OMS performance.

The measurement is generally performed with an optical splitter or a port mirror in the industry. The optical splitter is characterized 
by high accuracy and low cost and is suitable for temporarily arranged measurement though being hard to adjust; The port mirror is 
easy to adjust, but only high-end models such as Arista 7130 can simultaneously and functionally help to achieve minimal 
performance impact and maximum measurement accuracy. Mid-to-low end models are not suitable for OMS look-through 
performance measurement. YD provides brokers with special tools to measure and analyze the up-bound look-through 
performance of each order submission, quote submission, and order cancellation through OMSs. If you want to know your order 
look-through data, just ask the broker for help.

tcpdump -i <if_name> -n --time-stamp-type=adapter_unsynced --time-stamp-precision=nano -w <pcap_file>1

// Returns nanoseconds elapsed since current process starts up

YD_API_EXPORT unsigned long long getYDNanoTimestamp();

1

2

YD Trading System C++ API Programming Guide

117 / 135

af://n6677
af://n6680
af://n6689


In most cases, the look-through performance should not be a concern for investors. YD has conducted comprehensive tests for all 
versions to ensure that YD's expected performance indicators can be achieved during production. If investors suspect that the look-
through performance deteriorates, resulting in a decline in earnings, they can contact a broker to check the look-through delay for 
meeting the performance standard. The standard performance will be provided to the broker upon completion of each server test.

Under some special trading behaviors, the look-through performance of OMSs will deteriorate. At present, it is known that sending 
orders through OMSs too quick or too slow may significantly cause a prolongation of the look-through delay, which should be 
handled separately. If the look-through performance deterioration is not caused by these trading behaviors, please contact YD's 
customer service department for troubleshooting.

7.15.2.1 Order blocking  

Order blocking can be caused when multiple orders are sent from the same designated connection to an OMS at a gap shorter than 
the look-through delay. Due to the TCP connection of exchanges, the orders need to be queued for submission. On one hand, they 
will arrive at the same time, while on the other hand, they are queued for submission, thus, in terms of look-through performance, 
in addition to the normal look-through delay of the first order, the look-through delay of each subsequent order will be prolonged 
by a relatively fixed period of time compared to the previous one, resulting in order blocking.

Order blocking may be caused by one or more of the following circumstances.

When orders are queued through "Fix" and sent by the same connection ("Any" and "Preferred" orders do not queue), it is 
liable to be caused by that investors always consistently use their the fixed connections, if determined, to submit orders.

Some investors always submit orders too frequently, resulting in a prolongation of the busy time of the connection and a 
higher possibility of the subsequent Fix instructions for queuing. For example, a customer is sending preferred orders 
frequently through a connection and has not avoided the arrival time of the market data segments.

The arrived market data segments or trading nodes have a starting gun effect, and most investors hurry on submitting orders 
at the same time.

Some investors used a wrong warm-up method, resulting in a huge volume of orders at an OMS. For example, sending and 
cancelling orders at the OMS at a very high frequency in order to achieve a warming effect.

Sending orders to different connections at the same time can also cause a sequential prolongation of delay periods, however, 
the prolongation is much less than that for one connection. It is common that when sending preferred orders to all 
connections, the look-through delay of preferred orders for subsequent connections will prolong slightly.

Order blocking is essentially caused by normal trading. In addition to further reducing the look-through delay. There is no better 
way for YD to alleviate such problem.. For brokers, investors should be dissuaded in time from taking such wrong warm-up 
measures. If investors submit their preferred orders too frequently through connections or fail to adjust the time periods suggested 
according to the market data segments for sending preferred orders, they, when causing a server confliction, should become 
separated and be arranged on different OMSs.

7.15.2.2 Slow order submission  

When the order submission speed on an OMS is too slow, the cache of the OMS server will cool down, and the look-through delay of 
the order will significantly be prolonged when new orders arrive. In most cases, the OMS will not encounter this problem since the 
orders of all investors trading through the OMS will warm up the cache. This problem can only be caused when all investors on the 
OMS submit orders at a very low speed (such as at a frequency of 1 order / min for the entire OMS). When this problem is confirmed 
by the investors and brokers, it is suggested that investors send warm-up orders in advance to avoid this problem. The sending 
method and timing of warm-up orders are described below.

The best warm-up effect can be achieved when the warm-up orders and formal orders are sent through the same execution path.

The warm-up effect is best when the execution path is the same for warm-up orders and formal orders. For example, when 
formal orders are submitted, the warm-up effect achieved through order submission is better than that through order 
cancellation.

The warm-up effect of warm-up orders is only suitable for connections specified for the warm-up orders, while, for other 
connections, which is limited.

The execution path of warm-up orders that fail to reach exchanges is shorter than that of formal orders, and the warm-up 
effect cannot achieve the best.

When warm-up orders and formal orders are sent from the same connection under different instruments, the execution path 
is the same, which can help to achieve the warm-up effect.

The gap between warm-up order and formal order submission can also affect the warm-up effect. Tests have shown that the best 
warm-up effect can be achieved when the two are sent at a gap of 5s. Shorter gaps cannot help to achieve a better effect but can 
cause freezing of the order margin for a longer time before receiving notifications, which can also cause a higher pressure or even 
order blocking on the OMS. Warm-up orders should not be submitted when receiving market data, otherwise normal orders may be 
blocked. Since warm-up orders are not intensively sent, it is relatively easy to solve this problem.

The warm-up effects for different investors do not affect each other, and therefore do not worry that other customers' warm-up 
behaviors will affect your own warm-up effect. In fact, they also have a certain warm-up effect on your formal order submission.

According to the sending conditions for the above-mentioned warm-up effect, namely the connection for warm-up order 
submission should be the same as that for formal order submission, the time for receiving market data should be calculated in 
order to send warm-up orders in advance and ensure that they have been sent to the exchange. This precise warm-up method is 
always suggested. For investors, the regularly sent preferred orders through their own connections are also feasible warm-up 
orders, however, the effect is not as good as that achieved through precise warming up.

YD Trading System C++ API Programming Guide

118 / 135

af://n6694
af://n6709


Parameter Field Description

YDMarketData InstrumentRef Instrument reference No.

  TradingDay Current trading day

  PreSettlementPrice Pre-settlement price

  PreClosePrice Pre-close price

  PreOpenInterest Unilateral Pre-position volume

  UpperLimitPrice Upper limit price

  LowerLimitPrice Lower limit price

  LastPrice Last price

  BidPrice Bid price

  AskPrice Ask price

  BidVolume Bid volume

  AskVolume Ask volume

  Turnover Nominal transaction amount

8 Market data  
YD OMSs can be used to forward market data segments from the front server of an exchange to investors. The market data 
provided by YD is mainly used for calculating refreshed position profits/losses and margins, and in the event of a disruption in 
receiving multicast market data, providing backup market data. Compared to the sent multicast market of the exchange, it is slower 
and may case miss of trading opportunities, and therefore trading directly based on the forwarded market data is not 
recommended.

For investors setting RecalcMode to auto or subscribeOnly, the simplest way to obtain the market data relating to a position 
instrument is to directly query the market data relating to the corresponding instrument through the market data pointer 
m_pMarketData. Refer to Fund Refresh Mechanism for details.

For investors who want to obtain market data relating to non-position instruments, or set RecalcMode to "off", or be notified when 
the market data is updated, they can subscribe to them actively. Before actively subscribing to market data, the API parameters 
should be configured according to the following method (When RecalcMode is set to auto or subscribeOnly, the API will overwrite 
the following parameters, so do not worry about the setting of API market data parameters). Since no UDP market data is not 
suggested to be used by YD OMSs, ReceiveUDPMarketData must always be kept at "no", otherwise no market data will be received.

When ConnectTCPMarketData is set to “yes”, a separate market data thread will be created after API is started. In order to prevent 
the market data thread from affecting the operation of other threads of the strategy system, the market data thread can be bound 
to a CPU through configuring API parameters.

If the market data is expected to be notified to the strategy program as soon as possible, the working mode of the market data 
receiving thread can be set:

When set to -1, the system will be in a busy query state, and the market notification performance is the best, however, the 
thread will occupy the operation CPU core;

Investors who do not want the market thread to occupy too much CPU space and do not care about the market data 
notification performance can set a timeout for the "select" function. The operation under this mode is slower than that under 
busy query, but the CPU space can be greatly saved. It is suggested that investors set a timeout at the GUI client to reduce 
unnecessary performance overhead.

For a detailed description of the above parameters, refer to Market Data Configuration.

APIs provide the following function for subscribing to and unsubscribing to instrument-based market data. Any actively subscribed 
instrument-based market data can be queried directly through the market data pointer m_pMarketData mentioned in the above 
instrument pointer.

After the instrument-based market data is updated, investors will be notified through the following callback function.

ConnectTCPMarketData=yes

ReceiveUDPMarketData=no

1

2

# Affinity CPU ID for thread to receive TCP market data, -1 indicate no need to set CPU affinity

TCPMarketDataCPUID=-1

1

2

# Timeout of select() when receiving TCP market data, in millisec. -1 indicates running without select()

TCPMarketDataTimeout=10

1

2

virtual bool subscribe(const YDInstrument *pInstrument);

virtual bool unsubscribe(const YDInstrument *pInstrument);

1

2

virtual void notifyMarketData(const YDMarketData *pMarketData) {}1

YD Trading System C++ API Programming Guide

119 / 135

af://n6724


Parameter Field Description

  OpenInterest Unilateral position volume

  Volume Daily trading volume.

  TimeStamp

Millisecond counts from the beginning (17:00) to the order submission time of a
trading day. For example:
500 ms past 21:00 in night trading hours: 3600*(21-17)*1000+500 = 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-17)*1000+500 = 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference time, refer to
string2TimeStamp and timeStamp2String of ydUtil.h

  AveragePrice Average trade price

  DynamicBasePrice
Dynamic benchmark price. Please refer to Risk control of price deviation for more
details.

  LastTradeTimeStamp

Millisecond counts from the beginning (17:00) to the most recent transaction time
of a trading day，only apply to SSE and SZSE。For example:
500 ms past 21:00 in night trading hours: 3600*(21-17)*1000+500 = 14400500
500 ms past 9:00 in day trading hours: 3600*(24+9-17)*1000+500 = 57600500
500 ms past 9:00 in Monday's trading hours: 3600*(24+9-17)*1000+500 = 5760500
For the conversion between YD's timestamp time and reference time, refer to
string2TimeStamp and timeStamp2String of ydUtil.h

  m_pInstrument Order instrument pointer

YD Trading System C++ API Programming Guide

120 / 135



9 Risk control  
The risk control rules of YD can be divided into two categories: before-trade risk control and after-trade risk control.

The before-trade risk control intercepts non-compliant orders and prevents them from reaching the exchange. The before-trade risk 
control is typically regulatory requirements, and violating them may result in regulatory penalties such as trading restrictions, 
including self-trades, order cancellation limits and position limits. The before-trade risk control is performed by the OMS before 
sending instructions to the exchange. If they fail to pass, error notifications will be sent back via the API. Investors using 
ydExtendedApi can utilize the checkAndInsert series methods to perform local API risk control checks according to the 
checkAndInsert series methods. If the check results are acceptable, orders can be submitted normally to the OMS. If the check 
results are unacceptable, the function will return "False". Investors can check ErrorNo within "YDInputOrder" or "YDInputQuote". It's 
important to note that even if the API performs local risk checks, the OMS still conducts its own risk checks during the order 
processing.

The after-trade risk control is a concern for brokers or investors themselves. Violation of these risk control rules will increase the risk 
for both brokers and investors. Because the boundaries of risk control thresholds are relatively lenient, even if there is a slight 
breach, it will not result in significant changes, such as information volume and other risk control rules. However, if there is a 
business need to ensure the effectiveness of thresholds under extreme conditions (for example, when investors place orders at very 
short intervals, and by the time risk control receives the report, it has exceeded the threshold significantly), a stronger risk control 
threshold can be set to avoid exceeding the threshold too much under extreme conditions. For example, if the business requires a 
position limit threshold of 100 lots, it can be set to 90, leaving a margin of 10 lots for exceeding. The typical after-trade risk control 
measures include automatically adjusting the investor's trading permissions or sending risk control alerts.

9.1 Before-trade risk control  

9.1.1 Before-trade risk control of open position volume  

The risk control of open position volume can be divided into two dimensions: product level and instrument level. Each dimension 
can independently control the total open position volume, as well as buy-to-open volume and sell-to-open volume. The following 
example will be explained using the open position volume. The processing methods for risk control of buy-to-open volume and sell-
to-open volume are similar.

The risk control rules at the product level involve the aggregation of the open position volume for all instruments belonging to that 
product. Once the risk control threshold at the product level is triggered, no further open instructions can be sent for all 
instruments within that product.

The risk control rules at the instrument level aim to perform a risk control for the total open position volume under an instrument. 
Once the risk control threshold of this instrument level is reached, this instrument will be unavailable for sending open position 
instructions.

This risk control will not be started after the open position volume reaches the threshold, otherwise, once a new open position 
order is submitted to an exchange, a value being higher than the risk control threshold will be caused. Therefore, what YD actually 
controls is a possible open position volume. When an open position order is sent, the possible open position volume of YD will 
increase, which will not change in case of "pending order". When the final order status is reached, the untraded open position 
volume can be deducted from the possible open position volume. Therefore, if there are a large number of pending open position 
orders, the subsequent open position orders will also be rejected due to this risk control.

For each risk control parameter at the product level, refer to OpenLimit and DirectionOpenLimit[2] of 
YDAccountProductInfo.TradingConstraints[HedgeFlag]. For each risk control parameter at the instrument level, refer to OpenLimit 
and DirectionOpenLimit[2] of YDAccountInstrumentInfo.TradingConstraints[HedgeFlag]. For field meanings, refer to Risk Control 
Parameters.

9.1.2 Before-trade risk control of trade volume  

The risk control of trade volume can be divided into two levels: product level and instrument level. 

The risk control rules at the product level aim to perform a risk control for the total bid/ask offset volume under all instruments 
relating to a product. Once the risk control threshold of this product level is reached, all instruments relating to this product will be 
unavailable for sending any instruction.

The risk control rules at the instrument level aim to perform a risk control for the total bid/ask offset volume under an instrument. 
Once the risk control threshold of this instrument level is reached, this instrument will be unavailable for sending any instruction.

This risk control will not be started after the trade volume reaches the threshold, otherwise, once a new order is submitted to an 
exchange, a value being higher than the risk control threshold will be caused. Therefore, what YD actually controls is a possible 
trade volume. When an order is sent, the possible trade volume of YD will increase, which will not change in case of "pending order". 
When the final order status is reached, the untraded order volume can be deducted from the possible trade volume. Therefore, if 
there are a large number of pending orders, the subsequent orders will also be rejected due to this risk control.

For each risk control parameter at the product level, refer to TradeVolumeLimit of 
YDAccountProductInfo.TradingConstraints[HedgeFlag]. For each risk control parameter at the instrument level, refer to 
TradeVolumeLimit of YDAccountInstrumentInfo.TradingConstraints[HedgeFlag] For field meanings, refer to Risk Control Parameters.

9.1.3 Before-trade risk control of position volume  

The risk control of position volume can be divided into two levels: product level and instrument level. Each level aims to control the 
position volume, long position volume and short position volume, respectively. Taking the position volume as an example, the 
processing methods for risk control of long position volume and short position volume are similar.

The risk control rules at the product level aim to perform a risk control for the total long/short position volume under all 
instruments relating to a product. Once the risk control threshold of this product level is reached, all instruments relating to this 
product will be unavailable for sending open position instructions.

YD Trading System C++ API Programming Guide

121 / 135

af://n6829
af://n6833
af://n6834
af://n6840
af://n6846


Level Field Description

Exchange GeneralRiskParamType Fixed to YD_GRPT_ExchangeMaxOrderVolume

  AccountRef
-1 indicates that it is valid for all investors, otherwise it indicates the user's
AccountRef value, which is the account itself for investor account login

  ExtendedRef Corresponding to YDExchange.ExchangeRef, the only identified exchange

  IntValue1 Upper limit of order volume

Product GeneralRiskParamType Fixed to YD_GRPT_ProductMaxOrderVolume

  AccountRef
-1 indicates that it is valid for all investors, otherwise it indicates the user's
AccountRef value, which is the account itself for investor account login

  ExtendedRef Corresponding to YDProduct.ProductRef, the only identified product

  IntValue1 Upper limit of order volume

Instrument GeneralRiskParamType Fixed to YD_GRPT_InstrumentMaxOrderVolume

  AccountRef
-1 indicates that it is valid for all investors, otherwise it indicates the user's
AccountRef value, which is the account itself for investor account login

  ExtendedRef Corresponding to YDInstrument.InstrumentRef, the only identified instrument

  IntValue1 Upper limit of order volume

The risk control rules at the instrument level aim to perform a risk control for the total long/short position volume under an 
instrument. Once the risk control threshold of this instrument level is reached, this instrument will be unavailable for sending open 
position instructions.

This risk control will not be started after the position volume reaches the threshold, otherwise, once a new open position order is 
submitted to an exchange, a value being higher than the risk control threshold will be caused. Therefore, what YD actually controls 
is a possible position volume. When an open position order is sent, the possible position volume of YD will increase, which will not 
change in case of "pending order". When the final order status is reached, the untraded order volume can be deducted from the 
possible position volume. Therefore, if there are a large number of pending open position orders, the subsequent open position 
orders will also be rejected due to this risk control.

For each risk control parameter at the product level, refer to PositionLimit and DirectionPositionLimit[2] of 
YDAccountProductInfo.TradingConstraints[HedgeFlag]. For each risk control parameter at the instrument level, refer to 
PositionLimit and DirectionPositionLimit[2] of YDAccountInstrumentInfo.TradingConstraints[HedgeFlag]. For field meanings, refer to 
Risk Control Parameters.

9.1.4 Risk control of order cancellation counts  

The risk control of order cancellation counts can be divided into two levels: product level and instrument level.

The risk control rules at the product level aim to perform a risk control for the specific order cancellation counts under all 
instruments relating to a product. Once the risk control threshold of this product level is reached, all instruments relating to this 
product will be unavailable for sending any instruction.

The risk control rules at the instrument level aim to perform a risk control for the specific order cancellation counts under an 
instrument. Once the risk control threshold of this instrument level is reached, this instrument will be unavailable for sending any 
instruction.

The definition of the above-mentioned specific order is as follows:

FAK and FOK orders of CFFEX of treasury bond futures

Limit orders of CFFEX except treasury bond future

Limit orders of SHFE, INE, DCE, CZCE and GFEX

This risk control will not be started after the price-limited order cancellation counts reache the threshold, otherwise, once a new 
order is submitted to an exchange, a value being higher than the risk control threshold will be caused. Therefore, what YD actually 
controls is a possible order cancellation counts. When a price-limited order is sent, the possible order cancellation counts of YD will 
increase, which will not change in case of "pending order" or active order cancellation. When all trades are made, one order 
cancellation count will be deducted. Therefore, if there are a large number of pending price-limited orders, the subsequent price-
limited orders will also be rejected due to this risk control.

For each risk control parameter at the product level, refer to CancelLimit of YDAccountProductInfo.TradingConstraints[HedgeFlag]. 
For each risk control parameter at the instrument level, refer to CancelLimit of 
YDAccountInstrumentInfo.TradingConstraints[HedgeFlag]. For field meanings, refer to Risk Control Parameters.

 

9.1.5 Risk control of single order volume  

Although the maximum order volumes based on each instrument are control by exchanges, considering that the strategy-specified 
volumes of some investors are still too large, they should be controlled under the help of OMSs. Therefore, YD supports limiting the 
maximum volume of orders submitted each time.

Among common risk control parameters, those order volume risk control parameters support setting at three levels i.e. exchange, 
product, and instrument, respectively:

YD Trading System C++ API Programming Guide

122 / 135

af://n6852
af://n6867


Level Field Description

Upper deviation ratio limit of dynamic base
price

GeneralRiskParamType Fixed to YD_GRPT_DynamicPriceLimitUpperRatio

  FloatValue Ratio threshold

Lower deviation ratio limit of dynamic base
price

GeneralRiskParamType Fixed to YD_GRPT_DynamicPriceLimitLowerRatio

  FloatValue Ratio threshold

Upper limit of dynamic base price deviating
from tick count

GeneralRiskParamType Fixed to YD_GRPT_DynamicPriceLimitUpperTickCount

  IntValue1 tick count

Lower limit of dynamic base price deviating
from tick count

GeneralRiskParamType Fixed to YD_GRPT_DynamicPriceLimitLowerTickCount

  IntValue1 tick count

Upper deviation ratio limit of latest price GeneralRiskParamType Fixed to YD_GRPT_DynamicLastPriceLimitUpperRatio

  FloatValue Ratio threshold

Lower deviation ratio limit of latest price GeneralRiskParamType Fixed to YD_GRPT_DynamicLastPriceLimitLowerRatio

  FloatValue Ratio threshold

Upper limit of latest price deviating from tick
count

GeneralRiskParamType
Fixed to
YD_GRPT_DynamicLastPriceLimitUpperTickCount

  IntValue1 tick count

Lower limit of latest price deviating from tick
count

GeneralRiskParamType
Fixed to
YD_GRPT_DynamicLastPriceLimitLowerTickCount

  IntValue1 tick count

Since the AccountRef under each level involves all accounts or designated accounts, six levels can be formed after pair combination. 
Their priorities from high to low (a high priority parameter configuration overrides a low priority one) are:

Instrument level and for designated accounts

Product level and for designated accounts

Exchange level and for designated accounts

Instrument level and for all investors

Product level and for all investors

Exchange level and for all investors

9.1.6 Risk control of price deviation  

When the difference between the order price and the dynamic base price exceeds the threshold, or when the difference between 
the order price and the latest price exceeds the threshold, the order will be rejected by the OMS. The dynamic base price differs in 
different exchanges in terms of value rules:

For SSE and SZSE, the dynamic base price refers to a trade price generated during the latest call auction under an instrument. If 
no any trade price is generated during the opening call auction, the previous settlement price should be used as the latest 
reference price; If no any trade price is generated during the trading call auction, the last trade price generated this call auction 
should be used as the latest reference price;

For futures exchanges, if the trade volume in the market data is not 0, the dynamic base price should be the latest one, 
otherwise, the pre settlement price should be used.

YD directly provides the dynamic base price YDMarketData.DynamicBasePrice in the market data.

This risk control rules involving a large number of parameters can be triggered when meeting any of the following conditions:

Due to field constraints, YD needs to synthesize multiple general risk control rules configured for the same product to represent one 
of its own risk control rules. Since this risk control rule only allows configuration at the global and product level. Setting ExtendedRef 
to empty indicates that it applies to all products, while setting it to a product name indicates that it only applies to that specific 
product. and no account is allowed to be designated, the following AccountRef and ExtendedRef are omitted. Please note that it is 
possible to receive multiple sets of parameters with ExtendedRef being empty and specific products set. Please pay attention to 
distinguishing between them. The remaining parameters for price deviation are shown in the table below:

YD Trading System C++ API Programming Guide

123 / 135

af://n6937


Level Field Description

Global GeneralRiskParamType Fixed to YD_GRPT_OptionLongPositionCost

  AccountRef
-1 indicates that it is valid for all investors, otherwise it indicates the user's AccountRef
value, which is the account itself for investor account login

  FloatValue Position cost limit threshold

Level Field Description

Exchange
level

GeneralRiskParamType Fixed to YD_GRPT_ExchangeOptionLongPositionCost

  AccountRef
-1 indicates that it is valid for all investors, otherwise it indicates the user's
AccountRef value, which is the account itself for investor account login

  ExtendedRef
It can be set to empty to apply to all exchanges or set to a specific exchange's
'ExchangeRef' to apply only to that particular exchange. 'ExchangeRef' can be
obtained from 'YDExchange'.

  FloatValue Position cost limit threshold

Due to 'ExtendedRef' being applicable to all products and specific products, there are two levels in total. Their priority, from high to 
low (with higher priority overriding lower priority parameter configurations), is as follows:

Specific products

All products

9.1.7 Option calling amount  

This risk control rule can be used for controlling the option calling amount (total long position cost of options). The long position 
cost of options is the sum of long position costs of options at corresponding levels (all costs under an account or those costs under 
an account in an exchange). The long position cost of a single option is the sum of its position details, and the cost of a single 
position detail is its trade price times the trade volume.

This risk control rule supports the following sub-rules:

Aggregate calling amount control, which involves controlling the total calling amount by summing up the calling amounts 
across all exchanges. If the aggregate calling amount exceeds the threshold, order placement on all exchanges will be 
restricted.

Single exchange calling amount control, which involves aggregating the calling amounts of individual exchanges. Only when the 
calling amount of a specific exchange exceeds the threshold will order placement on that exchange be restricted.

The parameters for aggregate calling amount control are shown in the table below:

If ydExtendedApi is used, the position cost threshold of an investor at the global level can be found through 
YDExtendedAccount.OptionLongPositionCostLimit. The current summarized position cost value of the investor at the global level 
can also be found through YDExtendedAccount.OptionLongPositionCost.

Since AccountRef involves all accounts or designated accounts, two levels can be covered. Their priorities from high to low (a high 
priority parameter configuration overrides a low priority one) are:

For designated accounts

For all investors

The parameters for single exchange calling amount control are shown in the table below:

Due to AccountRef being applicable to all accounts or specific accounts, and ExtendedRef being applicable to all exchanges or 
specific exchanges, there are a total of four levels. Their priorities from high to low (a high priority parameter configuration 
overrides a low priority one) are:

For designated accounts, for specific exchanges

For designated accounts, for all exchanges

For all investors, for specific exchanges

For all investors, for all exchanges

9.1.8 Before-trade risk control of message count  

To help investors control their maximum message count in advance and to make up for deficiencies in the force of Mssage Count 
Risk Control, YD implements a preemptive risk control based on the maximum message count. If an order will exceed the maximum 
message count limit, it will be rejected by the OMS. Refer to Message Count Commission for the method of calculating message 
count.

The reason that risk control based on the OTR message count upper limit cannot be provided is that after reaching a higher 
OTR level, investors can submit more successful orders to reduce OTR. If orders are forbidden after reaching the OTR, this will 
cut off the possibility of investors making adjustments themselves. Since the message count is a monotonically increasing 
number, its maximum value can be limited.

Only when an investor is charged a message count commission on a contract and YDAccountInstrumentInfo.MaxMessage is greater 
than 0, will the maximum message count of the investor on the contract be controlled. Similar to other preemptive risk controls, this 
risk control does not start only after the message count of the order reaches the threshold. Otherwise, once a new order is 
submitted to the exchange, it will exceed the risk control threshold. Therefore, what YD actually controls is the possible message 

YD Trading System C++ API Programming Guide

124 / 135

af://n7039
af://n7104


Field Description

AccountRef Account reference No. which can be obtained from YDAccount.

ExchangeRef Exchange reference No. which can be obtained from YDExchange.

ProductRef Product reference No. which can be obtained from YDProduct.

InstrumentRef Instrument reference No. which can be obtained from YDInstrumentRef.

MaxMessage The updated maximum information volume threshold.

Level Field Description

Single instrument open position volume
limit

GeneralRiskParamType Fixed to 1019

  AccountID Funds account

  ExtendedID Instrument

  IntValue1 Maximum buy-to-open volume

  IntValue2 Maximum sell-to-open volume

Product instrument open position volume
limit

GeneralRiskParamType Fixed to 1020

  AccountID Funds account

  ExtendedID Product

  IntValue1 Maximum buy-to-open volume

  IntValue2 Maximum sell-to-open volume

Exchange instrument open position
volume limit

GeneralRiskParamType Fixed to 1021

  AccountID Funds account

  ExtendedID Exchange

count. When an order is submitted, YD will increase the possible message count. If the order is cancelled, the possible message 
count does not change. If the order is completely filled, the possible message count is reduced. Therefore, if there are currently a 
large number of pending orders, subsequent orders may be rejected due to this risk control.

Unlike other preemptive risk controls, this risk control setting is directly converted from CTP daily initial data. As long as the 
investor's maximum message count risk control is set in CTP, the risk control rule will be automatically set in YD. Similar to CTP, YD 
also supports mid-session adjustments to the maximum message count. Please contact the administrator if you need to make 
adjustments during the session.

If the broker adjusts the maximum information volume risk control parameters during trading hours, the API will notify the investor 
through the following callback function:

The field information for 'YDUpdateMessageCommissionConfig' is as follows:

9.2 After-trade risk control  

9.2.1 After-trade risk control of open position volume  

When the total buy-to-open volume of the option series is higher than or equal to the maximum buy-to-open volume, or the sell-to-
open volume is higher than or equal to the maximum sell-to-open volume, the "Only position closing allowed" right can be set for all 
instruments relating to the option series under the account.

The YD after-trade risk control system supports the following six types of risk control:

Single instrument open position volume limit: Restricts the open position volume of a particular instrument.

Product instrument open position volume limit: For each instrument under a specified product, restricts the open position 
volume of individual instruments.

Exchange instrument open position volume limit: For each instrument under a specified exchange, restricts the open position 
volume of individual instruments.

Option series aggregate open position volume limit: Restricts the total open position volume of all instruments under a 
specified option series.

Product aggregate open position volume limit: Restricts the total open position volume of all instruments under a specified 
product.

Exchange product aggregate open position volume limit: For each product under a specified exchange, restricts the total open 
position volume of all instruments within that product.

The parameters of this risk control rule are as follows:

virtual void notifyUpdateMessageCommissionConfig(const YDUpdateMessageCommissionConfig 

*pUpdateMessageCommissionConfig)

1

YD Trading System C++ API Programming Guide

125 / 135

af://n7132
af://n7133


Level Field Description

  IntValue1 Maximum buy-to-open volume

  IntValue2 Maximum sell-to-open volume

Option series aggregate open position
volume limit

GeneralRiskParamType Fixed to 1007

  AccountID Funds account

  ExtendedID

It can be in the following two formats:
Option product code: Option expiration year: Option
expiration month
Option product code: Underlying instrument code

  IntValue1 Maximum buy-to-open volume

  IntValue2 Maximum sell-to-open volume

Product aggregate open position volume
limit

GeneralRiskParamType Fixed to 1022

  AccountID Funds account

  ExtendedID Product

  IntValue1 Maximum buy-to-open volume

  IntValue2 Maximum sell-to-open volume

Exchange product aggregate open
position volume limit

GeneralRiskParamType Fixed to 1023

  AccountID Funds account

  ExtendedID Exchange

  IntValue1 Maximum buy-to-open volume

  IntValue2 Maximum sell-to-open volume

Level Field Description

Single instrument trade volume limit GeneralRiskParamType Fixed to 1014

  AccountID Funds account

  ExtendedID Instrument

  IntValue1 Maximum trade volume

Product instrument trade volume limit GeneralRiskParamType Fixed to 1015

  AccountID Funds account

  ExtendedID Product

  IntValue1 Maximum trade volume

There is no overlapping relationship between different types of risk control rules in this rule. If risk control rules are set at multiple 
levels simultaneously, these rules will take effect concurrently.

At present, the external risk control system is responsible for the execution of this risk control rule. Therefore, investors cannot 
obtain specific risk control parameter values or determine whether the risk control rules have been triggered through the API.

9.2.2 After-trade risk control of trade volume  

When the total trade volume of this option series is greater than or equal to the maximum trade volume, set 'only close' permission 
for all instruments of this option series in the account.

The YD after-trade risk control system supports the following six types of risk control:

Single instrument trade volume limit: Restricts the trade volume of a specific instrument.

Product instrument trade volume limit: For each instrument under a specified product, restricts the trade volume of individual 
instruments.

Exchange instrument trade volume limit: For each instrument under a specified exchange, restricts the trade volume of 
individual instruments.

Option series aggregate trade volume limit: Restricts the total trade volume of all instruments under a specified option series.

Product aggregate trade volume limit: Restricts the total trade volume of all instruments under a specified product.

Exchange product aggregate trade volume limit: For each product under a specified exchange, restricts the total trade volume 
of all instruments within that product.

The parameters of this risk control rule are as follows:

YD Trading System C++ API Programming Guide

126 / 135

af://n7277


Level Field Description

Exchange instrument trade volume
limit

GeneralRiskParamType Fixed to 1016

  AccountID Funds account

  ExtendedID Exchange

  IntValue1 Maximum trade volume

Option series aggregate trade volume
limit

GeneralRiskParamType Fixed to 1006

  AccountID Funds account

  ExtendedID

It can be in the following two formats:
Option product code: Option expiration year: Option
expiration month
Option product code: Underlying instrument

  IntValue1 Maximum trade volume

Product aggregate trade volume limit GeneralRiskParamType Fixed to 1017

  AccountID Funds account

  ExtendedID Product

  IntValue1 Maximum trade volume

Exchange product aggregate trade
volume limit

GeneralRiskParamType Fixed to 1018

  AccountID Funds account

  ExtendedID Exchange

  IntValue1 Maximum trade volume

Level Field Description

Single instrument position volume limit GeneralRiskParamType Fixed to 1009

  AccountID Funds account

  ExtendedID Instrument

  IntValue1 Long position volume limit

  IntValue2 Short position volume limit

Product instrument position volume
limit

GeneralRiskParamType Fixed to 1010

  AccountID Funds account

There is no overlapping relationship between different types of risk control rules in this rule. If risk control rules are set at multiple 
levels simultaneously, these rules will take effect concurrently.

At present, the external risk control system is responsible for the execution of this risk control rule. Therefore, investors cannot 
obtain specific risk control parameter values or determine whether the risk control rules have been triggered through the API.

9.2.3 After-trade risk control of position volume  

When the total long position volume of this option series is greater than or equal to the long position volume limit, or when the total 
short position is greater than or equal to the short position volume limit, set 'only close' permission for all instruments of this option 
series in the account. If, subsequently, the total position volume becomes less than the position volume limit through closing 
positions, this rule will not automatically set trading permission. However, if the administrator manually sets it to allow trading 
permission, the system will not change it back to 'only close' permission.

The YD after-trade risk control system supports the following six types of risk control:

Single instrument position volume limit: Restricts the position volume of a specific instrument.

Product instrument position volume limit: For each instrument under a specified product, restricts the position volume of 
individual instruments.

Exchange instrument position volume limit: For each instrument under a specified exchange, restricts the position volume of 
individual instruments.

Option series aggregate position volume limit: Restricts the total position volume of all instruments under a specified option 
series.

Product aggregate position volume limit: Restricts the total position volume of all instruments under a specified product.

Exchange product aggregate position volume limit: For each product under a specified exchange, restricts the total position 
volume of all instruments within that product.

The parameters of this risk control rule are as follows:

YD Trading System C++ API Programming Guide

127 / 135

af://n7397


Level Field Description

  ExtendedID Product

  IntValue1 Long position volume limit

  IntValue2 Short position volume limit

Exchange instrument position volume
limit

GeneralRiskParamType Fixed to 1011

  AccountID Funds account

  ExtendedID Exchange

  IntValue1 Long position volume limit

  IntValue2 Short position volume limit

Option series aggregate position
volume limit

GeneralRiskParamType Fixed to 1005

  AccountID Funds account

  ExtendedID

It can be in the following two formats:
Option product code: Option expiration year: Option
expiration month
Option product code: Underlying instrument

  IntValue1 Long position volume limit

  IntValue2 Short position volume limit

Product aggregate position volume
limit

GeneralRiskParamType Fixed to 1012

  AccountID Funds account

  ExtendedID Product

  IntValue1 Long position volume limit

  IntValue2 Short position volume limit

Exchange product aggregate position
volume limit

GeneralRiskParamType Fixed to 1013

  AccountID Funds account

  ExtendedID Exchange

  IntValue1 Long position volume limit

  IntValue2 Short position volume limit

Level Field Description

Global GeneralRiskParamType Fixed to 1004

  AccountID
Null indicates that it is valid for all investors, otherwise it indicates the user's AccountID
value

  FloatValue Threshold of failed order submission counts

There is no overlapping relationship between different types of risk control rules in this rule. If risk control rules are set at multiple 
levels simultaneously, these rules will take effect concurrently.

At present, the external risk control system is responsible for the execution of this risk control rule. Therefore, investors cannot 
obtain specific risk control parameter values or determine whether the risk control rules have been triggered through the API.

9.2.4 Risk control of failed order submission counts  

Failed order submission counts are supervised by exchanges, however, the supervision measures are relatively flexible. In order to 
avoid this, brokers usually want to control the failed order submission counts of investors to exchanges, and even those counts 
slightly exceeding the limit. Therefore, YD controls the failed order submission counts to exchanges through after-trade risk control. 
When reaching the threshold of failed order submission counts, YD's system will set the trading rights of customers to "trade 
prohibited". Please note that only failed orders sent back from exchanges can cause an increase of the total failed order submission 
counts. Those failed orders intercepted by the OMSs will not cause an increase of the failed order submission counts.

This risk control rule is inaccurate when calculating failed order submission counts to exchanges. If ydServer is restarted and the 
client does not recover it through the HA mode, the failed order submissions that occurred during the previous ydServer operation 
will not be counted.

The global level risk control parameters are shown in the following table:

At present, the external risk control system is responsible for executing this risk control rule. Therefore, investors cannot obtain 
specific risk control parameter values or determine whether the risk control rules have been triggered through the API.

YD Trading System C++ API Programming Guide

128 / 135

af://n7541


Level Field Description

Product GeneralRiskParamType Fixed to YD_GRPT_TradePositionRatio

  AccountRef
-1 indicates that it is valid for all investors, otherwise it indicates the user's AccountRef
value, which is the account itself for investor account login

  ExtendedRef
It can be set as empty to apply to all products, or a single product's ProductRef can be
set to apply only to that specific product. ProductRef can be obtained from YDProduct.

  IntValue1
Trade volume threshold. The trade position ratio can be calculated only when the total
trade volume reaches the threshold

  FloatValue Trade position ratio threshold

Level Field Description

Product GeneralRiskParamType Fixed to YD_GRPT_OrderCancelRatio

9.2.5 Risk control of trade position ratio  

When the trade volume under all instruments relating to a product reaches a certain extent, the ratio of the trade volume to the 
position volume of the product is not allowed to exceed a certain value, otherwise it will be considered a violation. When the risk 
control rule is triggered, YD will send a warning to the operators of the broker for their attention, however, no required risk control 
measures will be taken. This risk control rule is only available for options of SSE and SZSE. This risk control will be set on the counter, 
and the risk control parameters will also be distributed to the API.

The trade volume refers to the total volume of trades obtained after bid/ask offset under all instruments relating to a product.

The position volume refers to the higher one of the real-time net position volume and net preday position volume under all 
instruments relating to a product, namely the 

. The calculation formula for 
the net position volume under a single instrument is: 

, where the long/short 
position volumes are the values after deducting the corresponding frozen position volumes. The frozen volume mainly includes 
positions frozen due to position closing orders and combinations, etc. However, the frozen volume will not be included in the 
following two cases:

The current day is the last trading day, and the frozen volume under this instrument is 0;

When 2 days are left before the expiry date and the combination type relates to bull call spread, bear call spread, bull put 
spread and bear put spread, the frozen volume of the combination part will not be included, because these combinations will 
be decombined by exchanges according to the trading rules when settlement is made on the same day.

Assume that the net preday position volume is 5 lots, currently, the long/short position volumes under Instrument A are 11 
lots and 5 lots, respectively, the long/short position volumes under Instrument B are 2 lots and 3 lots, respectively. At this time, 
for the next bull call spread combination, the first leg refers to the long position volume under Instrument A, the second leg 
refers to the short position volume under Instrument B, then the position volume calculation process is as follows:

Net real-time position volume under Instrument A = | (11-1) - 5 |+1=5, where the minus one in two brackets refers to the 
combined frozen position volume

Net real-time position volume under Instrument B = |2-(3-1)|+1=1, where the minus one in two brackets refers to the 
combined frozen position volume

Net real-time position volume =5+1=6

Net position volume = max (5,6)=6

The risk control parameters are shown in the following table:

Due to AccountRef being applicable to all accounts or specific accounts, and ExtendedRef being applicable to all exchanges or 
specific exchanges, there are a total of four levels. Their priorities from high to low (a high priority parameter configuration 
overrides a low priority one) are:

For designated accounts, for designated exchanges.

For designated accounts, for all exchanges.

For all investors, for designated exchanges.

For all investors, for all exchanges.

Currently, this risk control rule is executed by the ydClient. Investors can view the risk control parameters and risk rule status 
through ydClient, or obtain risk control parameters through APIs.

9.2.6 Order cancellation/submission ratio risk control  

When the sum of order submission counts under all instruments relating to a product reaches a certain extent, (assumed as X), the 
ratio of the (order cancellation counts - X) / (order submission counts-X) for this product cannot exceed a certain value, otherwise it 
will be considered a violation. When the risk control rule is triggered, YD will send a warning to the operators of the broker for their 
attention, however, no required risk control measures will be taken. The order cancellation counts refer to the sum of those under 
all instruments relating to the product. The order submission counts refer to the sum of those under all instruments relating to the 
product. This risk control will be set on the counter, and the risk control parameters will also be delivered to the API.

The risk control parameters are shown in the following table:

YD Trading System C++ API Programming Guide

129 / 135

af://n7563
af://n7615


Level Field Description

  AccountRef
-1 indicates that it is valid for all investors, otherwise it indicates the user's AccountRef
value, which is the account itself for investor account login

  ExtendedRef
It can be set as empty to apply to all products, or a ProductRef of a specific product can
be set to apply only to that particular product. ProductRef can be obtained from
YDProduct.

  IntValue1
The order submission count threshold. The order cancellation / submission ratio is
calculated only when the total order submission count reaches the threshold

  FloatValue Order cancellation / submission ratio threshold

Level Field Description

Product GeneralRiskParamType Fixed to 1001

  AccountID Funds account

  ExtendedID Corresponding to YDProduct.ProductID, the only identified product

  IntValue1
message count threshold. The "Only position closing allowed" right can be set under
the instrument after being triggered

  IntValue2
message count threshold. The "Trade prohibited" right can be set under the instrument
after being triggered

Level Field Description

Product GeneralRiskParamType Fixed to 1002

  AccountID Funds account

  ExtendedID Corresponding to YDProduct.ProductID, the only identified product

  IntValue1
message count threshold. The "Only position closing allowed" right can be set under
the instrument after being triggered

  IntValue2
message count threshold. The "Trade prohibited" right can be set under the instrument
after being triggered

  FloatValue OTR threshold

Due to AccountRef being applicable to all accounts or specific accounts, and ExtendedRef being applicable to all exchanges or 
specific exchanges, there are a total of four levels. Their priorities from high to low (a high priority parameter configuration 
overrides a low priority one) are:

For designated accounts, for designated exchanges.

For designated accounts, for all exchanges.

for all accounts, for designated exchanges.

for all accounts, for all exchanges.

Currently, this risk control rule is executed by the ydClient. Investors can view the risk control parameters and risk rule status 
through ydClient, or obtain risk control parameters through APIs.

9.2.7 After-trade message count risk control  

At present, SHFE, DCE and CZCE manage investors' order placement/cancellation volume through message count control rather 
than mandatory control to reduce the pressure of invalid orders on exchanges. Many investors are not accustomed to this change, 
and even some of them may have paid high message count commissions due to failing to control the order volume. Considering 
that no corresponding message count commission is required on the primary OMS during trading, and its operation characteristics 
obtained through market-wide summary calculation also make it difficult to calculate message count commission temporarily, YD 
provides an after-trade risk control measure regarding message count to help brokers and investors reduce the risk on message 
count commission as much as possible. For the calculation methods of Message Count and OTR (Order to Trade Ratio), please refer 
to Derivatives Message Count Commission.

YD provides two different message count control methods, namely, single message count control and message count / OTR control.

For single message count control, as long as the message count exceeds the set thresholds, investors' trading rights under the 
instrument will be set to "Only position closing allowed" or "Trade prohibited" depending on different thresholds. YD provides 
before-trade-message-count-risk-control that corresponds to after-trade risk control. When using the before-trade-message-count-
risk-control for single message quantity, it is recommended to prioritize the use of before-trade risk control.

 

The risk control parameters are as follows, which are set in external risk control programs and will not be sent to APIs at present:

Currently, this risk control rule is executed by an external risk control system, so investors cannot obtain specific risk control 
parameter values through APIs, nor can they know whether the risk control rule is triggered.

For message count / OTR control, as long as both the OTR and message count exceed the set thresholds, investors' trading rights 
under the instrument will be set to "Only position closing allowed" or "Trade prohibited" depending on different thresholds. The risk 
control parameters are as follows:

YD Trading System C++ API Programming Guide

130 / 135

af://n7654


Level Field Description

Product GeneralRiskParamType Fixed to 1003

  AccountID Funds account

  ExtendedID Corresponding to YDProduct.ProductID, the only identified product

  IntValue1 Threshold of days left to expiry date

Currently, this risk control rule is executed by an external risk control system, so investors cannot obtain specific risk control 
parameter values through APIs, nor can they know whether the risk control rule is triggered.

9.2.8 Position opening not allowed when approaching to expiry date  

In order to facilitate brokers to set trading rights for prohibiting position opening under instruments approaching their expiry dates, 
YD provides a convenient setting method according to after-trade risk control rules.

This risk control rule can be used for checking for reaching the set threshold through YDInstrument.ExpireTradingDayCount. If yes, 
the "Only position closing allowed" trading right of each investor under the corresponding instrument can be set accordingly.

The parameters of this risk control rule are as follows:

Currently, this risk control rule is executed by an external risk control system, so investors cannot obtain specific risk control 
parameter values through APIs, nor can they know whether the risk control rule is triggered.

YD Trading System C++ API Programming Guide

131 / 135

af://n7717


File name Description

instrument.csv Instrument info

rate.csv Derivatives commission rate and margin rate

cashCommissionRate.csv Spots' commission rate

tradingRight.csv Trading right

account.csv Account info, including fund information

position.csv Derivatives position

holding.csv Spots position

combPosition.csv Comb position

marginSideInfo.csv Large-side margin information

order.csv Order

trade.csv Trade

quote.csv Quote

Parameter Description

YDAccount Pointer to the account which needs deposit and withdrawal to

10 Management  
10.1 Export Inverstors Data  
Investors and administrators can use following method to export investors data at any time. dir is the directory for exporting data, 
accountIDs is the list of exported accounts(separated by spaces). Investors should fill accountIDS with their own accounts, while 
administrators can fill accountIDs with accounts to be exported(Empty strings indicated all accounts).

The following files will be generated in the export directory:

10.2 Password Modification  
Within the trading session, investors can modify their trading passwords via API. Once modified, the new password will remain valid 
indefinitely. The method for calling this API is as follows:

The result of the password modification will be returned through the following callback. If the value of 'errorNo' is 0, it indicates a 
successful modification. Other values indicate an error occurred, usually due to the incorrect old 
password(YD_ERROR_OldPasswordMismatch) or failed to pass password strength check(YD_ERROR_WeakPassword).

10.3 Logging  
The YD API, by default, will write logs to the 'log' directory under the path of the executable program. Investors can utilize this 
mechanism to write their own log information. If the 'log' directory is not found, no log files will be generated.

The logs are split on a daily basis, and typically the API will generate the following log sample.

10.4 Deposit and Withdrawal  
YD provides an on-site deposit and withdrawal function. Administrator users can deposit and withdraw funds for investors and 
adjust the investor's fund usage limit during the trading session. For deposit and withdrawal services, please refer to Net Deposit 
and Withdrawal Amount. This function can only be called by administrator users with deposit and withdrawal permissions.

The parameters of the above method are described as follows:

virtual bool exportData(const char *dir,const char *accountIDs="")1

virtual bool changePassword(const char *username,const char *oldPassword,const char *newPassword)1

virtual void notifyChangePassword(int errorNo)1

virtual void writeLog(const char *format,...)1

14:59:54 YD API start

14:59:54 version 1.108.36.33

14:59:54 build time Mar  3 2022 17:37:32

14:59:54 build version GCC 10.2.0

14:59:54 TCP trading server 0 connected

1

2

3

4

5

virtual bool alterMoney(const YDAccount *pAccount,int alterMoneyType,double alterValue)1

YD Trading System C++ API Programming Guide

132 / 135

af://n7743
af://n7744
af://n7788
af://n7793
af://n7798


Parameter Description

alterMoneyType alter money type

alterValue alter value

Alter Money Type Descriptions

YD_AM_ModifyUsage

Adjust the investor's fund usage limit. If the adjusted value is less than the original value, it
will check whether the adjustment will cause Available to be negative. If it is negative, the
adjustment is not allowed. For the calculation method of Available, please refer tousable，
please note that the check condition here is Available(), not Useable()

YD_AM_Deposit
Deposit. Add the amount specified by alterValue to the existing accumulated deposit
amount.

YD_AM_FrozenWithdraw
Freeze withdrawal. Add the amount specified by alterValue to the existing frozen
withdrawal amount.

YD_AM_CancelFrozenWithdraw
Cancel frozen withdrawal. Reduce the amount specified by alterValue based on the existing
frozen withdrawal amount. If alterValue is 0, it means canceling all frozen withdrawals.

YD_AM_TryWithdraw
First check whether the available funds are sufficient to withdraw money. If so, withdraw
money. If not, return an error.

YD_AM_Withdraw
Withdrawal: Add the amount specified by alterValue to the existing cumulative withdrawal
amount.

YD_AM_DepositTo
Deposit to the specified amount. Directly set the current cumulative deposit amount. If the
adjustment value is less than the current value, the adjustment is not allowed.

YD_AM_WithdrawTo
Withdraw to a specified amount. Directly set the current cumulative withdrawal amount. If
the adjustment value is less than the current value, no adjustment is allowed.

YD_AM_ForceModifyUsage
Forces investors to adjust their fund usage limits without checking whether Available will
become a negative number after the adjustment.

The deposit and withdrawal types and their meanings are shown in the following table:

YD has many deposit and withdrawal related tools, which will affect the final net deposit and withdrawal results of the counter. 
We recommend that brokers only choose to use one of them and not mix them, otherwise it will be difficult to analyze the net 
deposit and withdrawal results when these tools act on deposits and withdrawals at the same time. In order to help investors 
and brokers analyze and understand the impact of using multiple tools in certain special situations, the following briefly 
introduces how each tool affects counter deposits and withdrawals:

Manual deposits and withdrawals on ydClient and the management side: use YD_AM_Deposit and YD_AM_Withdraw to 
deposit and withdraw

ydSync: read deposit and withdrawal flow from deposit and withdrawal sources (CTPRisk, files, etc.), summarize in 
ydSync, and deposit and withdraw through YD_AM_DepositTo and YD_AM_WithdrawTo

ydFundManager and the management side's fund synchronization function: read deposit and withdrawal flow from 
deposit and withdrawal sources (CTPRisk, files, manual operations, etc.), summarize in ydSync, and deposit and withdraw 
through YD_AM_DepositTo and YD_AM_WithdrawTo

YD Trading System C++ API Programming Guide

133 / 135



11 Tools  
11.1 ydcmd  
ydcmd is a tool for investors to use. It mainly solves the basic query and emergency processing needs when brokers restrict 
investors from using YDClient. Currently, it supports batch order withdrawal, batch quote withdrawal, password modification, and 
customer data export. The help information of this command is as follows, which can be obtained by entering ydcmd in the 
command line.

ydcmd is developed based on ydApi. Its operating principle and characteristics are consistent with those of ordinary API clients. The 
general conventions of this tool are as follows:

The first parameter is always the function name. After changing the ydcmd file name to the function name, the corresponding 
function can be used directly through the function name, and the subsequent parameters remain unchanged. For example, 
after renaming ydcmd to ydExport, you can directly call ydExport config.txt <dir> <username> <password> in the command 
line.

The second parameter is always the configuration file path. The configuration method is exactly the same as the configuration 
file requirements of ydApi. Usually, the configuration file in production can be directly reused

There are multiple ways to enter the username and password. If the username and password are not specified in the 
command line, you will be prompted to enter them after the program runs. You can only specify the username in the 
command line, and you will be prompted to enter the password after the program runs.

Although ydcmd is mainly used by investors, some functions can also be used by administrators in need. For functions that can be 
used by administrators, please refer to the detailed description of each function below.

11.1.1 Export-Investor-Data Tools  

Export all business data of investors to multiple files. The output content is the data snapshot when notifyCaughtUp is received. 
Administrators can use it to export all business data of all investors on the counter. The output files please refer to [Export 
Inverstors Data].(#export-inverstors-data)

You need to specify the export directory when running the program. If you do not specify it, it will be exported to the current 
directory.

11.1.2 Change-Password Tools  

Change investor's password. Administrators can use this function to change their own password.

A new password can be specified in the command line. If a new password is not specified in the command line, the program will 
prompt you to enter the new password twice after running.

11.1.3 Cancel-All-Orders Tools  

Cancel all ordinary orders of investors in pending order status, including:

Ordinary orders in pending order status, including trigger orders

quote-derived orders in pending order status, and the exchange allows the cancellation of quote-derived orders

Please note that non-ordinary orders (YDOrderFlag is not 0) are not within the cancellation range, such as exercise, abandonment of 
automatic exercise, etc.

If once is specified in the parameter, the program will issue cancellation instructions one by one according to the ordinary pending 
order list when notifyCaughtUp is received, and then end the operation. It will not wait for the result, nor will it issue cancellation 
instructions again. The actual number of cancellation orders issued will be output on the command line. If the number of pending 
orders is huge, it may trigger counter flow control or exchange flow control, so one run may not ensure all orders are cancelled. In 
this case, you can run it multiple times or use the interactive cancellation mode.

When using once mode, the return value of the program is defined as follows:

0: No cancelable orders

1: Other errors

2: There are cancelable orders, and the API has issued all cancel orders

3: There are cancelable orders, and the API has issued a cancel order instruction but failed to send

If once is not specified in the parameters, the program will interactively run the order cancellation logic, and the following 
information will be continuously refreshed on the command line:

Every time the investor presses Enter, a cancel order instruction will be issued for the current cancelable order, and then the 
number of cancelable orders will continue to be refreshed in the next line. When the number of cancelable orders is 0, the program 
ends automatically.

ydcmd ydExport <config file> [<dir> [<username> [<password>]]]

ydcmd ydChangePassword <config file> [<username> [<password> [<new password>]]]

ydcmd ydCancelOrders <config file> [<username> [<password> [once]]]

ydcmd ydCancelQuotes <config file> [<username> [<password> [once]]]

1

2

3

4

XXX order(s) can be canceled, press return to start1

YD Trading System C++ API Programming Guide

134 / 135

af://n7856
af://n7857
af://n7869
af://n7872
af://n7875


11.1.4 Cancel-All-Quotes Tools  

Cancel all quotes that are still pending orders on at least one side of the investor.

If once is specified in the parameter, the program will issue quote cancellation instructions one by one according to the list of 
revocable quotes when notifyCaughtUp is received, and then end the operation. It will not wait for the result, nor will it issue quote 
cancellation instructions again. The command line will output the actual number of quote cancellations issued. If the number of 
revocable quotes is huge, it may trigger counter flow control or exchange flow control, so one run may not ensure that all quotes 
are withdrawn. In this case, you can run it multiple times or use the interactive quote cancellation mode.

When using once mode, the return value of the program is defined as follows:

0: No revocable quotes

1: Other errors

2: There are revocable quotes, and the API has issued all quote cancellation instructions

3: There are revocable quotes, and the API has issued a quote cancellation instruction but failed to send

If once is not specified in the parameters, the program will interactively run the quote cancellation logic, and the following 
information will be continuously refreshed on the command line:

Every time the investor presses Enter, a quote cancellation instruction will be issued for the current revocable quote, and then the 
number of revocable quotes will continue to be refreshed on the next line. When the number of revocable quotes is 0, the program 
ends automatically.

XXX quote(s) can be canceled, press return to start1

YD Trading System C++ API Programming Guide

135 / 135

af://n7897

	1. Quickstart
	1.1. Environment preparation
	1.2. Strategy program

	2. Basic concept
	2.1. API selection
	2.1.1. YdApi
	2.1.2. YdExtendedApi

	2.2. Order modes
	2.2.1. TCP order
	2.2.2. UDP order
	2.2.3. XTCP order

	2.3. API thread
	2.3.1. TCP notification receiving thread
	2.3.2. TCP market data receiving thread
	2.3.3. Timer thread
	2.3.4. User-defined field
	2.3.5. Local User-defined field
	2.3.6. Remote User-defined field

	2.4. Version rule
	2.4.1. API version compatibility


	3. Life cycle
	3.1. Creation
	3.1.1. Create ydApi
	3.1.2. Create ydExtendedApi
	3.1.3. Configuration file
	3.1.3.1. Network configuration
	3.1.3.2. Trading configuration
	3.1.3.3. Market data configuration
	3.1.3.4. Other configurations
	3.1.3.5. User-defined configguration


	3.2. Start
	3.2.1. Connect
	3.2.2. Login
	3.2.2.1. Password
	3.2.2.1.1. Password Validity Period

	3.2.2.2. Look-through regulation
	3.2.2.2.1. AppID and AuthCode
	3.2.2.2.2. Information collection

	3.2.2.3. Trading day

	3.2.3. Receive static data
	3.2.3.1. Exchanges
	3.2.3.2. Products
	3.2.3.3. Instrument
	3.2.3.4. Traditional combined position definition
	3.2.3.5. Preday market data
	3.2.3.6. Account
	3.2.3.7. Preday derivatives positions
	3.2.3.8. Preday holdings
	3.2.3.9. Preday spots positions
	3.2.3.10. Traditional combined preday position
	3.2.3.11. System parameter
	3.2.3.12. Cash Commission Rate
	3.2.3.13. Brokerage Fee Rate
	3.2.3.14. Commission Rate
	3.2.3.15. Message count commission rate
	3.2.3.16. Margin rate
	3.2.3.17. Margin adjustment during trading
	3.2.3.18. Account level information
	3.2.3.19. Combination margin parameters
	3.2.3.20. Account combination margin parameters
	3.2.3.21. Risk control parameters

	3.2.4. Receive dynamic data

	3.3. Reconnection
	3.3.1. Trading reconnection
	3.3.1.1. High availability

	3.3.2. Market data reconnection
	3.3.3. XTCP reconnection

	3.4. Destruction

	4. Fund 
	4.1. Equity
	4.1.1. Pre balance
	4.1.1.1. Pre balance of futures exchange
	4.1.1.2. Pre balance of stock exchange

	4.1.2. Today balance
	4.1.2.1. Maximum money usage

	4.1.3. Other equities

	4.2. Usable
	4.3. Net deposit and withdrawal
	4.4. Cash Income and Expenditure
	4.4.1. Spot Order Income and Expenditure
	4.4.2. Spot Trade income and expenditure
	4.4.3. Option Order premium
	4.4.4. Option Trade premium
	4.4.5. Profit / loss of futures positions

	4.5. Close profit/loss of futures
	4.6. Option market value
	4.7. Commission
	4.7.1. Cash Commission 
	4.7.2. Derivative Commission
	4.7.3. Exercise commission rate
	4.7.4. Derivatives message count commission

	4.8. Fund refresh mechanism
	4.8.1. Close
	4.8.2. Subscribe to market data
	4.8.3. Auto mode


	5. Positions
	5.1. Derivatives position model
	5.2. Spot position model
	5.3. Stock Option Spot Position Model
	5.3.1. Stock Option Increment Model
	5.3.2. Stock Option Full Model

	5.4. Position query 
	5.4.1. Derivatives position query 
	5.4.2. Spot position query
	5.4.3. Traditional combined position details query


	6. Margin model
	6.1. Traditional margin model
	6.1.1. Margin rate
	6.1.2. Futures margin
	6.1.3. Option margin
	6.1.3.1. Commodity option margin
	6.1.3.2. Stock index option margin
	6.1.3.3. Stock option margin

	6.1.4. Option exercise margin
	6.1.4.1. Commodity option exercise margin
	6.1.4.2. Stock option exercise margin

	6.1.5. Margin deduction
	6.1.5.1. One-way large-side margin
	6.1.5.2. Traditional combined margin
	6.1.5.2.1. Futures combination
	6.1.5.2.2. Option straddle 
	6.1.5.2.3. Sell option coverage
	6.1.5.2.4. Buy option coverage
	6.1.5.2.5. Vertical spread of sell options 
	6.1.5.2.6. Bull and bear spreads


	6.1.6. Trial calculation of margins
	6.1.6.1. Trial calculation of order margins
	6.1.6.2. Trial calculation of position margins
	6.1.6.3. Trial calculation of combined margins


	6.2. Portfolio margin model
	6.2.1. General concepts of portfolio margin model
	6.2.1.1. Investor margin coefficient
	6.2.1.2. Closing position check
	6.2.1.3. Applicable range

	6.2.2. CZCE SPBM
	6.2.2.1. Freezing additional margin
	6.2.2.2. Closing position verification
	6.2.2.3. Exercise margin

	6.2.3. DCE RULE
	6.2.3.1. Exercise margin

	6.2.4. SHFE and INE SPMM
	6.2.4.1. Close-out freezing margin

	6.2.5. CFFEX RCAMS


	7. Trade
	7.1. Normal trading service
	7.1.1. Orders
	7.1.1.1. Normal orders
	7.1.1.2. Multi-orders
	7.1.1.3. Local risk control orders
	7.1.1.4. Order notification
	7.1.1.5. Extended order notification
	7.1.1.6. Trade notification
	7.1.1.7. Extended trade notification

	7.1.2. Order cancellation
	7.1.2.1. Normal order cancellation
	7.1.2.2. Multi-order cancellation
	7.1.2.3. Order cancellation notification


	7.2. Covered service
	7.2.1. Spot freezing and unfreezing
	7.2.2. Covered open and close
	7.2.3. Normal-to-covered conversion

	7.3. Market maker service
	7.3.1. RFQ
	7.3.2. Quote
	7.3.2.1. Normal quote
	7.3.2.2. Multi-quote
	7.3.2.3. Quote notification
	7.3.2.4. Extended quote notification

	7.3.3. Quote cancellation
	7.3.3.1. Normal quote cancellation
	7.3.3.2. Multi-quote cancellation
	7.3.3.3. Cancel Derivative Quote
	7.3.3.4. Cancel Instrument Quote
	7.3.3.5. Quote cancellation notification

	7.3.4. Quote modification

	7.4. Combination and decombination position service 
	7.4.1. Native instruction
	7.4.1.1. Extended combination notification

	7.4.2. Auto instruction
	7.4.3. Auto tool

	7.5. Exercise and performance
	7.5.1. Exercise and performance of SHFE and INE
	7.5.1.1. Hedging of bidirectional options positions on SHFE and INE
	7.5.1.2. Option exercise of SHFE and INE
	7.5.1.3. Abandonment of option exercise of SHFE and INE
	7.5.1.4. Hedge performance for bi-directional futures positions after fulfillment for SHFE and INE

	7.5.2. Exercise and performance of DCE and GFEX
	7.5.2.1. Hedging of bidirectional options positions on DCE and GFEX
	7.5.2.2. Option exercise of DCE and GFEX
	7.5.2.3. Abandonment of option exercise of DCE and GFEX
	7.5.2.4. Hedge performance for bi-directional futures positions after fulfillment for DCE and GFEX

	7.5.3. Exercise and performance of CZCE 
	7.5.3.1. Option exercise of CZCE
	7.5.3.2. Abandonment of option exercise of CZCE

	7.5.4. Exercise and performance of CFFEX
	7.5.5. Exercise and performance of SSE and SZSE
	7.5.5.1. Option exercise of SSE and SZSE
	7.5.5.2. The combined exercise of SSE and SZSE


	7.6. Custody Transfer
	7.6.1. Unsupported services

	7.7. Trading restrictions
	7.7.1. Trading right
	7.7.2. Trading Constraint
	7.7.3. Order count and cancellation count limitation
	7.7.4. Login count limit
	7.7.5. Self-trade check
	7.7.5.1. Self-trade check of CFFEX quote

	7.7.6. Related Account ID
	7.7.7. Monotonic increase check of order reference number
	7.7.8. Counter flow control

	7.8. Trading information query
	7.8.1. Order query
	7.8.2. Trade query
	7.8.3. Quote query

	7.9. Trading segment
	7.9.1. Summarized trading segment
	7.9.2. Detailed trading segment

	7.10. Order group
	7.11. Multiple connections
	7.12. Raw protocol
	7.12.1. Up-bound message
	7.12.1.1. Preparation before operation
	7.12.1.2. Order submission message
	7.12.1.3. Order cancellation message
	7.12.1.4. Quote submission message
	7.12.1.5. Quote cancellation message

	7.12.2. Down-bound message
	7.12.2.1. Message header
	7.12.2.2. Order notification message
	7.12.2.3. Trade notification message
	7.12.2.4. RFQ notification message
	7.12.2.5. Quote notification message
	7.12.2.6. Notification message for order or quote cancellation failure
	7.12.2.7. Heartbeat message


	7.13. Fixed connection
	7.13.1. Obtaining connection information
	7.13.2. Seat flow control
	7.13.3. Designated connection for order submission
	7.13.4. Designated connection for order cancellation
	7.13.5. Reporting the results of the seat optimization

	7.14. Unknown timeout order processing
	7.15. Performance tuning
	7.15.1. API look-through performance
	7.15.2. OMS look-through performance
	7.15.2.1. Order blocking
	7.15.2.2. Slow order submission



	8. Market data
	9. Risk control
	9.1. Before-trade risk control
	9.1.1. Before-trade risk control of open position volume
	9.1.2. Before-trade risk control of trade volume
	9.1.3. Before-trade risk control of position volume
	9.1.4. Risk control of order cancellation counts
	9.1.5. Risk control of single order volume
	9.1.6. Risk control of price deviation
	9.1.7. Option calling amount
	9.1.8. Before-trade risk control of message count

	9.2. After-trade risk control
	9.2.1. After-trade risk control of open position volume
	9.2.2. After-trade risk control of trade volume
	9.2.3. After-trade risk control of position volume
	9.2.4. Risk control of failed order submission counts
	9.2.5. Risk control of trade position ratio
	9.2.6. Order cancellation/submission ratio risk control
	9.2.7. After-trade message count risk control
	9.2.8. Position opening not allowed when approaching to expiry date


	10. Management
	10.1. Export Inverstors Data
	10.2. Password Modification
	10.3. Logging
	10.4. Deposit and Withdrawal

	11. Tools
	11.1. ydcmd
	11.1.1. Export-Investor-Data Tools
	11.1.2. Change-Password Tools
	11.1.3. Cancel-All-Orders Tools
	11.1.4. Cancel-All-Quotes Tools



